首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract.  1. In libellulids, egg size differs between species and populations. There are also size differences within egg clutches of individual females.
2. Past experiments suggest that there are two different types of egg clutches in libellulids. Egg size decreases significantly during oviposition in species that perform non-contact guarding during oviposition. In contrast, in species ovipositing in tandem, egg size is randomly distributed.
3. This study deals with the possible consequences of egg size variation within the different egg clutch types. The study examined whether there is a correlation between egg development time, offspring sex or larval size and egg size.
4. The current experiments were conducted in Namibia and Germany. Five non-contact guarding and four tandem guarding libellulid species were used.
5. In some species larger eggs needed more time to develop, in some species no correlation between egg size and egg development time could be found, whereas in other species larger eggs developed faster.
6. The sex ratio was biased towards females in Leucorrhinia dubia and in Sympetrum striolatum and egg size was not associated with gender.
7. In both egg clutch types larger eggs resulted in larger larvae. In this study, evidence was found that the effects of egg size diminished with progressing larval development under good conditions. However, it is possible that the effects may have a greater influence under harsh circumstances.  相似文献   

2.
Naturally occurring aggression between female eastern bluebirds (Sialia sialis) is dramatic, resulting in severe injuries and even death. Furthermore, aggression among bluebirds is usually sex specific: males attack males, females attack females. We hypothesized that the primary function of female-female aggression is to guard against the threat of intraspecific egg dumping and that, in this context, same sex aggression is related to the possibility of advantages for males of parasitism (egg dumping) of their nests. Our hypotheses to explain variation in naturally occurring aggression predict temporal variation in aggressive tendency within nest cycles and between the sexes depending on asymmetries in threats to the residents. We report the results of experimental trials in the field designed to determine temporal variation in the aggressive tendencies of resident females to models of intruder females of two species, eastern bluebirds and brown-headed cowbirds (Molothrus ater). Both species dump eggs in the nests of bluebirds. Female aggression to eastern bluebird models is greatest during early stages of nest cycles; the patterns are most consistent with protection against egg dumping and protection of nest sites from usurpation. Male residents seldom attack female eastern bluebird models, but often attack models of female brown-headed cowbirds, a result inconsistent with the hypothesis that patterns of differential parental care control aggression of female and male residents.  相似文献   

3.
Parasitoid sex ratios are influenced by mating systems, whether complete inbreeding, partial inbreeding, complete inbreeding avoidance, or production of all-male broods by unmated females. Population genetic theory demonstrates that inbreeding is possible in haplodiploids because the purging of deleterious and lethal mutations through haploid males reduces inbreeding depression. However, this purging does not act quickly for deleterious mutations or female-limited traits (e.g., fecundity, host searching, sex ratio). The relationship between sex ratio, inbreeding, and inbreeding depression has not been explored in depth in parasitoids. The gregarious egg parasitoid, Trichogramma pretiosum Riley, collected from Riverside, CA (USA) produced a female-biased sex ratio of 0.24 (proportion of males). Six generations of sibling mating in the laboratory uncovered considerable inbreeding depression (∼ 20%) in fecundity and sex ratio. A population genetic study (based upon allozymes) showed the population was inbred (F it = 0.246), which corresponds to 56.6% sib-mating. However, average relatedness among females emerging from the same host egg was only 0.646, which is less than expected (0.75) if ovipositing females mate randomly. This lower relatedness could arise from inbreeding avoidance, multiple mating by females, or superparasitism. A review of the literature in general shows relatively low inbreeding depression in haplodiploid species, but indicates that inbreeding depression can be as high as that found in Drosophila. Finally, mating systems and inbreeding depression are thought to evolve in concert (in plants), but similar dynamic models of the joint evolution of sex ratio, mating systems, and inbreeding depression have not been developed for parasitoid wasps. Received: November 13, 1998 /Accepted: January 8, 1999  相似文献   

4.
5.
Abstract.  1. Intrinsic, inter-specific competition between parasitoid wasp species is a key factor in ecological community dynamics and is particularly important for application in biological control. Here three parasitoid wasp species with overlapping host ranges and differing life history strategies were chosen to examine parasitoid–parasitoid interactions: the egg parasitoid Trichogramma pretiosum, the egg–larval, polyembryonic parasitoid wasp Copidosoma floridanum, and the gregarious larval parasitoid Glyptapanteles pallipes , with the plusiine loopers Acanthoplusia agnata and Trichoplusia ni as hosts.
2.  Copidosoma floridanum has been shown to be an intrinsically superior competitor against larval parasitoids because of their production and increased investment in a soldier larval caste during development, but little is known of their interactions with egg parasitoid species. Trichogramma pretiosum completely dominated intrinsic competition with C. floridanum regardless of oviposition order or sex of the C. floridanum egg.
3. Competition between C. floridanum and G. pallipes , however, depended on the host stage at which parasitism occurred, the sex of the C. floridanum egg, and parasitoid development time. Copidosoma floridanum outcompeted G. pallipes overall, despite the fact that G. pallipes injects a polyDNA virus into the host.
4. The sex of the C. floridanum egg was a significant factor in its ability to shift caste ratios to produce more soldiers in response to G. pallipes competition.
5. Only developing female C. floridanum responded to competition with G. pallipes by increasing the ratio of soldier to reproductive larvae, and this happened only when multiparasitism occurred in the host's 1st and 2nd instar.  相似文献   

6.
Monogamous species are usually considered to be less likely to exhibit sex differences in behavior or brain structure. Most previous studies examining sex differences in stress hormone responses have used relatively sexually dimorphic species such as rats. We examined the stress hormone responses of monogamous California mice (Peromyscus californicus) to resident-intruder tests. We also tested males and females under different photoperiods, because photoperiod has been shown to affect both aggression and stress hormone responses. Females, but not males showed a significant increase in corticosterone levels immediately following a resident-intruder test. Males but not females showed elevated corticosterone levels under short days. Females tested in aggression tests also showed a significant increase in plasma oxytocin levels, but only when housed in long days. This was consistent with our observation that females but not males had more oxytocin positive cells in the paraventricular nucleus (PVN) when housed under long days. Our data show that sex differences in glucocorticoid responses identified in other rodents are present in a monogamous species.  相似文献   

7.
Models of sex ratio evolution under partial sib-mating are investigated in haplodiploids and diploids. In the cases of parental and sibling control of the brood investment ratio between the sexes in diploids, we find that the “unbeatable” investment ratio obtained by W. D. Hamilton (Science156, 477–488) for his local mate competition model corresponds in our inbreeding models to a weak form ESS (evolutionary stable strategy) fixation state and also to the population investment ratio at certain internal equilibria of our models. For haplodiploids, “strong form ESS” values exist under inbreeding in models involving father and sister control. Under brother and mother control, however, the ESS derived from local mate competition models is unstable in our inbreeding models to the introduction of any other investment ratio. We stress important qualitative differences between models involving local mate competition and inbreeding.  相似文献   

8.
1. Parasitic Hymenoptera reproduce by arrhenotokous parthenogenesis, and females of these species are able to control their progeny sex ratios. In structured populations of parasitic Hymenoptera, primary sex ratios are often highly biased toward females. However, sex ratio can be adjusted to the quality of encountered patches or hosts or be modified by differential developmental mortality.
2. In this paper, the effects were evaluated of the quality of encountered hosts and developmental mortality on the sex ratio in Anaphes victus , a solitary egg parasitoid whose first instar larvae present a sexual dimorphism and where superparasitism is regulated by larval fights between first instar larvae.
3. The results showed that a female-biased sex ratio is allocated to unparasitized hosts. In the presence of parasitized hosts, the second (superparasitizing) female produced a significantly higher sex ratio than the first female but the tertiary sex ratio (sex ratio at emergence) was not significantly different from the sex ratio produced with unparasitized hosts. The increase in the primary sex ratio produced by the second female was mostly compensated by the higher mortality of male larvae.  相似文献   

9.
Recent studies have used sex ratios to quantify the mating systems of organisms, the argument behind it being that more female-biased sex ratios are an indication of higher local mate competition, which goes hand-in-hand with higher levels of inbreeding. Although qualitative tests of the effects of mating systems on sex ratios abound, there is a dearth of studies that quantify both the mating system and the sex ratio. I use a colour dimorphism with a simple Mendelian inheritance to quantify the mating system of an unusual fig-pollinating wasp in which males disperse to obtain matings on non-natal mating patches. In qualitative agreement with initial expectations, the sex ratios of single foundresses are found to be higher than those of regular species. However, by quantifying the mating system, it is shown that the initial expectation is incorrect and this species' sex ratio is a poor predictor of its mating system (it underestimates the frequency of sib-mating). The species has a very high variance in sex ratio suggesting that excess males can simply avoid local mate competition (and hence a lowered fitness to their mother) by dispersing to other patches.  相似文献   

10.
Abstract. 1. Females of the multivoltine carpenter bee Xylocopa sulcutipes (Maa) (Hymenoptera: Anthophoridae) usually excavate a straight tunnel in dead twigs and mass provision a linear array of up to ten brood cells with pollen and nectar. An egg is deposited upon each food mass within one cell.
2. Female offspring generally receive a higher provisioning mass (0.180 ± 0.048 g) than males, a significant difference ( P > 0.001). There are, however, male larvae that receive as much food or more as their sisters or female larvae reared in another nest.
3. There is a close positive association between the size of a mother and the weight of provisions for individual daughters, but not for sons.
4. Female offspring are positioned in the innermost brood cells (Gositions 1, 2 and 3). The sex ratio of the outer cells is either significantly male biased (positions 4–6) or skewed towards males (positions 8 and 9). Positions 7 and 10 are in equilibrium.
5. Solitary females produce a significantly female biased sex ratio ( P < 0.01). Sex ratio in social nests is skewed toward females, but not significantly so ( P < 0.2). There is no significant difference between the sex ratio of solitary and social nests ( P = 0.361). The population sex ratio (pooled sex ratio of all broods produced) is significantly female biased ( P = 0.003).
6. Females kept in the laboratory produced female biased sex ratios whilst unmated females produced all-male broods indicating that insemination and ovarian development are not causally related.
7. The expected sex ratio (ESR) under equal investment, calculated as 1/CR (CR = mean male provision weight/mean female provision weight), is 137.5:117.5 (males:females), and differs significantly from that observed, 104:151 (males:females) ( P < 0.001). The 'Local Resource Enhlancement' hypothesis best explains the female biased sex ratio found in X.sulcatipes and its maintenance in the population.  相似文献   

11.
The beetle family Scolytidae includes several groups having regular sib-mating and extremely female-biased sex ratios. Two such groups are known to include haplodiploid species: (i) the tribe Xyleborini and (ii) Coccotrypes and related genera within the tribe Dryocoetini. Relationships of these groups have been controversial. We analysed elongation factor 1-α (852 bp) and cytochrome oxidase 1 (1179 bp) sequences for 40 species. The most-parsimonious trees imply a single origin of haplodiploidy uniting Xyleborini (approximately 1200 species) and sib-mating Dryocoetini (approximately 160 species). The sister-group of the haplodiploid clade is the outcrossing genus Dryocoetes. The controversial genus Premnobius is outside the haplodiploid clade. Most haplodiploid scolytids exploit novel resources, ambrosia fungi or seeds, but a few have the ancestral habit of feeding on phloem. Thus, scolytids provide the clearest example of W. D. Hamilton''s scenario for the evolution of haplodiploidy (life under bark leading to inbreeding and hence to female-biased sex ratios through haplodiploidy) and now constitute a unique opportunity to study diplodiploid and haplodiploid sister-lineages in a shared ancestral habitat. There is some evidence of sex determination by maternally inherited endosymbiotic bacteria, which may explain the consistency with which female-biased sex ratios and close inbreeding have been maintained.  相似文献   

12.
In most bird species males compete over access to females and have elevated circulating androgen levels when they establish and defend a breeding territory or guard a mate. Testosterone is involved in the regulation of territorial aggression and sexual display in males. In few bird species the traditional sex-roles are reversed and females are highly aggressive and compete over access to males. Such species represent excellent models to study the hormonal modulation of aggressive behavior in females. Plasma sex steroid concentrations in sex-role reversed species follow the patterns of birds with "traditional" sex-roles. The neural mechanisms modulating endocrine secretion and hormone-behavior interactions in sex-role reversed birds are currently unknown. We investigated the sex differences in the mRNA expression of androgen receptors, estrogen receptor alpha, and aromatase in two brain nuclei involved in reproductive and aggressive behavior in the black coucal, the nucleus taeniae and the bed nucleus of the stria terminalis. In the bed nucleus there were no sex differences in the receptor or aromatase expression. In the nucleus taeniae, however, we show for the first time, that females have a higher mRNA expression of androgen receptors than males. These results suggest that the expression of agonistic and courtship behavior in females does not depend on elevated blood hormone levels, but may be regulated via increased steroid hormone sensitivity in particular target areas in the brain. Hence, aggression in females and males may indeed be modulated by the same hormones, but regulated at different levels of the neuroendocrine cascade.  相似文献   

13.
Local mate competition (LMC) may involve some amount of inbreeding between siblings. Because sib-mating is generally accompanied by inbreeding depression, natural selection may favor a reduced rate of sib-mating, possibly affecting the evolution of sex ratio and reproductive group size. The present study theoretically investigated the evolution of these traits under LMC in the presence of inbreeding depression. When the reproductive group size evolves, the determination mechanism of sex ratio is important because the timescale of the sex ratio response to reproductive group size can affect the evolutionary process. We consider a spectrum of sex ratio determination mechanisms from purely unconditional to purely conditional, including intermediate modes with various relative strengths of unconditional and conditional effects. This analysis revealed that both the evolutionarily stable reproductive group size and ratio of males increase with higher inbreeding depression and with a larger relative strength of an unconditional effect in sex ratio determination. Unexpectedly, when the sex ratio is controlled purely conditionally, the reproductive group size cannot exceed three even under the severest level of inbreeding depression (i.e., lethal effect). The present study reveals the conditions for LMC to evolve through the analysis of the joint evolution of reproductive group size and sex ratio.  相似文献   

14.
Sexual dimorphisms in weaponry and aggression are common in species in which one sex (usually males) competes for access to mates or resources necessary for reproduction – sexually dimorphic weaponry and aggression, in other words, are frequently the result of intrasexual selection. In snapping shrimp, the major chela (snapping claw) can be a deadly weapon, and males of many species have larger chelae than females, a pattern readily interpreted as resulting from intrasexual selection. Thus, males might be expected to show more sex‐specific aggression than females, and be more aggressive overall. We tested these predictions in two species of snapping shrimp in a territorial defense context. Neither of these predictions was supported: in both species, females, but not males, engaged in sex‐specific aggression and females were more aggressive than males overall. These contrasting sexual dimorphisms – larger weaponry in males but higher aggression in females – highlight the importance of considering the function of weaponry and aggression in contexts other than direct competitions over mates. In addition, species differences in the degree of sexual dimorphism in chela size were due to differences in female, not male, chela size, and the species with greater sexual dimorphism in weaponry was significantly less aggressive overall; also, while paired and solitary males did not differ in residual chela size, for the species with greater sexual dimorphism, females carrying embryos had smaller residual chela sizes. These results suggest that understanding the sexual dimorphisms in weaponry and aggression in snapping shrimp requires understanding the relative costs and benefits of both in females as well as males.  相似文献   

15.
Abstract. 1. Intraspecific aggression between termite major workers was used to obtain estimates of foraging distances for three Microtermes species in Sudan.
2. Maximum foraging distance recorded for M. sp. nr albopartitus (Sjöstedt) in Khartoum was 11.3 m, giving an estimated minimum colony area of 100 m2. This is probably an underestimate. In the Tokar Delta, individuals from single colonies of M. najdensis Harris were encountered up to 42 m apart, giving a colony area of 1390 m2.
3. Intraspecific aggression could not be used reliably to distinguish members of different colonies of M. lepidus Sjöstedt. Soil barrier formation between groups of workers in petri dishes may be of use as a supplementary technique, especially for species showing no clear aggression.
4. Experiments on isolated laboratory colonics of M. sp. Nr lepidus Sjöstedt, established from alates collected in Khartoum, further confirmed the value of inter-colony aggression for indicating colony identity.
5. The complications introduced into estimation of subterranean termite foraging areas by overlap and interdigitation of colonies are discussed.  相似文献   

16.

Social aggression is a pervasive feature of insect societies. In eusocial Hymenoptera, aggression among females can affect task performance and competition over direct reproduction (egg laying); in most species males participate in social interactions relatively rarely. Males of the independent-founding paper wasp Mischocyttarus mastigophorus are exceptional: they are aggressive toward female nestmates, leading us to explore the function of this unusual behavior. We applied social network analyses to data on M. mastigophorus social aggression to quantify sex differences in giving and receiving social aggression. The network analyses supported the pattern of biased male aggression toward female nestmates; females are relatively rarely aggressive to males. We then asked whether male aggression toward females was biased by females’ relative ovary development. Males were more aggressive toward females with better-developed ovaries, opposite to patterns of aggression among females. Because food brought to the colonies is often monopolized by dominant females, we suggest that males direct aggression toward socially dominant females with better-developed ovaries to obtain food. The implications of biased male aggression for female task performance and physiology are unknown.

  相似文献   

17.
The existence of consistent individual differences in behavior has been shown in a number of species, and several studies have found observable sex differences in these behaviors, yet their evolutionary implications remain unclear. Understanding the evolutionary dynamics of behavioral traits requires knowledge of their genetic architectures and whether this architecture differs between the sexes. We conducted a quantitative genetic study in a sexually size‐dimorphic spider, Larinioides sclopetarius, which exhibits sex differences in adult lifestyles. We observed pedigreed spiders for aggression, activity, exploration, and boldness and used animal models to disentangle genetic and environmental influences on these behaviors. We detected trends toward (i) higher additive genetic variances in aggression, activity, and exploration in males than females, and (ii) difference in variances due to common environment/maternal effects, permanent environment and residual variance in aggression and activity with the first two variances being higher in males for both behaviors. We found no sex differences in the amount of genetic and environmental variance in boldness. The mean heritability estimates of aggression, activity, exploration, and boldness range from 0.039 to 0.222 with no sizeable differences between females and males. We note that the credible intervals of the estimates are large, implying a high degree of uncertainty, which disallow a robust conclusion of sex differences in the quantitative genetic estimates. However, the observed estimates suggest that sex differences in the quantitative genetic architecture of the behaviors cannot be ruled out. Notably, the present study suggests that genetic underpinnings of behaviors may differ between sexes and it thus underscores the importance of taking sex differences into account in quantitative genetic studies.  相似文献   

18.
1. Growth of seedlings of 15 rain-forest tree species was compared under controlled conditions, at six different light levels (3, 6, 12, 25, 50 and 100% daylight).
2. Most plant variables showed strong ontogenetic changes; they were highly dependent on the biomass of the plant.
3. Growth rate was highest at intermediate light levels (25–50%) above which it declined. Most plant variables showed a curvilinear response to irradiance, with the largest changes at the lowest light levels.
4. There was a consistent ranking in growth between species; species that were fast growing in a low-light environment were also fast growing in a high-light environment.
5. At low light, interspecific variation in relative growth rate was determined mainly by differences in a morphological trait, the leaf area ratio (LAR), whereas at high light it was determined mainly by differences in a physiological trait, the net assimilation rate (NAR).
6. NAR became a stronger determinant of growth than LAR in more than 10–15% daylight. As light availability in the forest is generally much lower than this threshold level, it follows that interspecific variation in growth in a forest environment is mainly owing to variation in morphology.  相似文献   

19.
The crocodilia have multiple interesting characteristics that affect their population dynamics. They are among several reptile species which exhibit temperature-dependent sex determination (TSD) in which the temperature of egg incubation determines the sex of the hatchlings. Their life parameters, specifically birth and death rates, exhibit strong age-dependence. We develop delay-differential equation (DDE) models describing the evolution of a crocodilian population. In using the delay formulation, we are able to account for both the TSD and the age-dependence of the life parameters while maintaining some analytical tractability. In our single-delay model we also find an equilibrium point and prove its local asymptotic stability. We numerically solve the different models and investigate the effects of multiple delays on the age structure of the population as well as the sex ratio of the population. For all models we obtain very strong agreement with the age structure of crocodilian population data as reported in Smith and Webb (Aust. Wild. Res. 12, 541-554, 1985). We also obtain reasonable values for the sex ratio of the simulated population.  相似文献   

20.
The eggs of birds and reptiles contain detectable levels of several steroid hormones, and experimental application of such steroids can reverse genetically determined sex of the offspring. However, any causal influence of maternally derived yolk steroids on sex determination in birds and reptiles remains controversial. We measured yolk hormones (dihydrotestosterone, testosterone, and 17 beta-estradiol) in newly laid eggs of the montane scincid lizard Bassiana duperreyi. This species is well suited to such an analysis because (1) offspring sex is influenced by incubation temperatures and egg size as well as by sex chromosomes, suggesting that yolk hormones might somehow be involved in the complex pathways of sex determination, and (2) experimental application of either estradiol or fadrozole to such eggs strongly influences offspring sex. We obtained yolk by biopsy, before incubating the eggs at a temperature that produces a 50:50 sex ratio. Yolk steroid levels varied over a threefold range between eggs from different clutches, but there were no significant differences in yolk steroids, or in relative composition of steroids, between eggs destined to become male versus female. Further, yolk steroid concentrations were not significantly related to egg size. Thus, yolk steroid hormones do not appear to play a critical role in sex determination for B. duperreyi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号