首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-chromosome-linked inhibitor of apoptosis, XIAP, is the most powerful and ubiquitous intrinsic inhibitor of apoptosis. We have shown previously that the translation of XIAP is controlled by a potent internal ribosome entry site (IRES) element. IRES-mediated translation of XIAP is increased in response to cellular stress, suggesting the critical role for IRES translation during cellular stress. Here, we demonstrate that heterogeneous nuclear ribonucleoproteins C1 and C2 (hnRNPC1 and -C2) are part of the RNP complex that forms on XIAP IRES. Furthermore, the cellular levels of hnRNPC1 and -C2 parallel the activity of XIAP IRES and the overexpression of hnRNPC1 and -C2 specifically enhanced translation of XIAP IRES, suggesting that hnRNPC1 and -C2 may modulate XIAP expression. Given the central role of XIAP in the regulation of apoptosis these results are important for our understanding of the control of apoptosis.  相似文献   

2.
Translation of the X-linked inhibitor of apoptosis (XIAP) proceeds by internal ribosome entry site (IRES)-mediated initiation, a process that is physiologically important because XIAP expression is essential for cell survival under conditions of compromised cap-dependent translation, such as cellular stress. The regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the IRES element. We used RNA-affinity chromatography to identify XIAP ITAFs and isolated the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). We find that hnRNP A1 interacts with XIAP IRES RNA both in vitro and in vivo and that hnRNP A1 negatively regulates XIAP IRES activity. Moreover, XIAP IRES-dependent translation is significantly reduced when hnRNP A1 accumulates in the cytoplasm. Osmotic shock, a cellular stress that causes cytoplasmic accumulation of hnRNP A1, also leads to a decrease in XIAP levels that is abrogated by knockdown of hnRNP A1 expression. These results suggest that the subcellular localization of hnRNP A1 is an important determinant of its ability to negatively regulate XIAP IRES activity, suggesting that the subcellular distribution of ITAFs plays a critical role in regulating IRES-dependent translation. Our findings demonstrate that cytoplasmic hnRNP A1 is a negative regulator of XIAP IRES-dependent translation, indicating a novel function for the cytoplasmic form of this protein.  相似文献   

3.
Components of the cellular translation machinery are targets of caspase-mediated cleavage during apoptosis that correlates with the inhibition of protein synthesis, which accompanies apoptosis. Paradoxically, protein synthesis is required for apoptosis to occur in many experimental settings. Previous studies showed that two proteins that regulate apoptosis by controlling caspase activity, XIAP and Apaf-1, are translated by a unique, cap-independent mechanism mediated by an internal ribosome entry site (IRES) that is used preferentially under conditions in which normal cap-dependent translation is repressed. We investigated the regulation of XIAP and Apaf-1 following UVC irradiation. We show that UVC irradiation leads to the inhibition of translation and cell death. Furthermore, IRES-mediated translation of Apaf-1, but not XIAP, is enhanced by UVC irradiation, and this increase in Apaf-1 translation correlated with cell death. The enhanced Apaf-1 IRES-mediated translation is caspase-independent but is negatively modulated by the eIF2alpha kinase protein kinase RNA-like endoplasmic reticulum kinase. These data suggest that progression of UV-induced apoptosis requires IRES-mediated translation of Apaf-1 to ensure continuous levels of Apaf-1 despite an overall suppression of protein synthesis.  相似文献   

4.
5.
Elongation factor-2 (eEF2) catalyzes the movement of the ribosome along the mRNA. A single histidine residue in eEF2 (H715) is modified to form diphthamide. A role for eEF2 in the cellular stress response is highlighted by the fact that eEF2 is sensitive to oxidative stress and that it must be active to drive the synthesis of proteins that help cells to mitigate the adverse effects of oxidative stress. Many of these proteins are encoded by mRNAs containing a sequence called an “internal ribosomal entry site” (IRES). Under high oxidative stress conditions diphthamide-deficient cells were significantly more sensitive to cell death. These results suggest that diphthamide may play a role in protection against the degradation of eEF2. This protection is especially important in those situations in which eEF2 is necessary for the reprogramming of translation from global to IRES synthesis. Indeed, we found that the expression of X-linked inhibitor of apoptosis (XIAP) and fibroblast growth factor 2 (FGF2), two proteins synthesized from mRNAs with IRESs that promote cell survival, is deregulated in diphthamide-deficient cells. Our findings therefore suggest that eEF2 diphthamide controls the selective translation of IRES-dependent protein targets XIAP and FGF2, critical for cell survival under conditions of oxidative stress.  相似文献   

6.
Although cap-dependent translation initiation is the prevalent mode of ribosome binding to mRNAs in eukaryotes, some mRNAs exhibit the ability to bypass the requirement for the cap structure. The translation of X-chromosome-linked inhibitor of apoptosis protein (XIAP) mRNA is controlled by an internal ribosome entry site (IRES) element, which requires the interaction of the heterogeneous nuclear ribonucleoprotein C1–C2 (hnRNP-C1/C2). We analyze, at the protein level, the time course and distribution of XIAP and hnRNP-C1/C2 upon ischemia in mice or staurosporine (STP)-induced apoptosis in HT22 cells. Both ischemia and STP induced a parallel upregulation of XIAP and hnRNP-C1/C2 protein levels in the penumbra and in HT22 cells. These results suggest that the increased levels of hnRNP C1/C2 may modulate XIAP translation, probably by interacting with the XIAP-IRES. The up-regulation of hnRNP-C1/C2 may foster the synthesis of XIAP as a protective pathway by which neurons try to counteract the initial deleterious effects of apoptosis.  相似文献   

7.
X-chromosome-linked inhibitor of apoptosis, XIAP, has been shown to contain a strong internal ribosome entry site (IRES) within its 5' untranslated region (UTR) that promotes translation of XIAP mRNA under conditions of cellular stress. This claim came under scrutiny in a recent report demonstrating that the XIAP 5' UTR undergoes splicing when inserted between the two reporter cistrons of the dual luciferase plasmid Rluc/Fluc. In this paper, we demonstrate that the splicing within the XIAP 5' UTR specifically occurs only in the context of mRNA produced from the Rluc/Fluc but not the pbetagal/CAT bicistronic reporter plasmid.  相似文献   

8.
Members of the picornavirus family initiate translation of their RNA genomes by a cap-independent mechanism in which ribosomes bind to an internal site in the 5' untranslated region (5'-UTR). This unique process requires an internal ribosome entry site (IRES), a highly structured RNA whose function is mediated in part by interactions with cell proteins. The IRES element of human rhinovirus 2 (HRV-2) extends from nucleotide (nt) 10 to between nt 544 and 568 and has been shown to interact with two cell proteins, pyrimidine tract-binding protein (pPTB) and p97. To map the specific regions of HRV-14 RNA that bind cell proteins, mobility shift, UV cross-linking and Western immunoblot analyses were performed. The results indicate that an RNA sequence from nt 538 to 591 interacts with pPTB and La, two proteins previously shown to functionally interact with the IRES elements of several picornaviruses. Two additional proteins, p97 and p68, were also cross-linked to nt 538 to 591 RNA. These four proteins interact with a putatively unstructured portion of the 5'-UTR that contains a polypyrimidine tract and has been shown to be present at the 3' border of sequences that are essential for IRES function of HRV-2. These protein-RNA interactions are likely to play a role in internal initiation of translation.  相似文献   

9.
蛋白质翻译起始通常有两种机制,一是依赖帽结构的翻译,另一种是依赖5′非翻译区的内部核糖体进入位点(IRES).在后一种方式中,在某些IRES反式作用因子,如La蛋白、多聚嘧啶串结合蛋白1等的参与下,直接招募核糖体小亚基到mRNA的翻译起始位点,启始翻译.研究发现,参与细胞生长、分化、细胞周期进程、凋亡和压力调控的相关蛋白中通常含有IRES元件.基于功能,我们提出假说:转录激活因子1(ATF1)的5′-UTR可能具有IRES活性.为验证假说,首先构建了含全长ATF1 5′-UTR的双荧光素酶报告质粒|质粒转染结合报告酶活性分析显示,ATF1 5′-UTR在Bel7402、HCT-8和HEK293细胞中表现出不同的IRES活性|而此IRES活性与5′-UTR中的隐藏启动子无关.同时还发现,ATF1 5′-UTR在NIH3T3细胞中却没有IRES活性.与此结果相一致,Western印迹检测ATF1在这几种细胞系中的表达.结果显示,Bel7402、HCT 8和HEK293中ATF1蛋白质表达水平较高,而在NIH3T3中却极低. ATF1 5′-UTR的系列5′-删除突变及报告酶分析证明,ATF1 5′-UTR的完整性对其IRES活性大小发挥重要作用|其中5′端的204 bp序列对其IRES活性贡献较大. RNA-蛋白免疫共沉淀实验揭示,ATF1 5′-UTR可与La和PTBP1蛋白结合|抑制La和PTBP1蛋白质的表达,并可减低HEK293细胞中ATF1蛋白质表达水平.这些结果提示,La和PTBP1蛋白(两种ITAFs)为ATF1 5′-UTR发挥IRES活性所必需.总之,上述结果证明,ATF1 5′-UTR具有IRES活性,其活性发挥依赖与La和PTBP1蛋白的结合.上述发现为进一步研究La和PTBP1表达及亚细胞定位对ATF1 IRES调控机制的影响奠定了基础.  相似文献   

10.
Human La protein is known to interact with hepatitis C virus (HCV) internal ribosome entry site (IRES) and stimulate translation. Previously, we demonstrated that mutations within HCV SL IV lead to reduced binding to La-RNA recognition motif 2 (RRM2) and drastically affect HCV IRES-mediated translation. Also, the binding of La protein to SL IV of HCV IRES was shown to impart conformational alterations within the RNA so as to facilitate the formation of functional initiation complex. Here, we report that a synthetic peptide, LaR2C, derived from the C terminus of La-RRM2 competes with the binding of cellular La protein to the HCV IRES and acts as a dominant negative inhibitor of internal initiation of translation of HCV RNA. The peptide binds to the HCV IRES and inhibits the functional initiation complex formation. An Huh7 cell line constitutively expressing a bicistronic RNA in which both cap-dependent and HCV IRES-mediated translation can be easily assayed has been developed. The addition of purified TAT-LaR2C recombinant polypeptide that allows direct delivery of the peptide into the cells showed reduced expression of HCV IRES activity in this cell line. The study reveals valuable insights into the role of La protein in ribosome assembly at the HCV IRES and also provides the basis for targeting ribosome-HCV IRES interaction to design potent antiviral therapy.  相似文献   

11.
12.
PRDM13是锌指蛋白转录抑制因子(positive regulatory domain zinc finger protein,PRDM) 家族中的一员,其在细胞分化、肿瘤的发生和恶性转化中起着重要的作用。而对于PRDM13 基因侧翼序列是否含有内部核糖体进入位点(internal ribosome entry site, IRES)及其功能所知甚少。本研究对PRDM13 5′端的非翻译区(5′UTR)进行IRES结构与功能分析,探索其在细胞血清饥饿应激条件下对PRDM13翻译的影响。实验发现,在血清饥饿的条件下,肝癌细胞Bel7402/WT中PRDM13的蛋白质水平增加,但是其mRNA水平基本没有变化。将PRDM13 5′UTR的序列插入双顺反子的报告载体(pRL-FL)中,并且将构建的载体(pRL-PRDM13-FL)转染进细胞中,结果显示,PRDM13 5′UTR含有IRES,且发现PRDM13 5′UTR中的105 nt(53~157)对其IRES的功能至关重要。在帽依赖的翻译(cap-dependent translation)机制被抑制时,IRES这种机制可有效维持PRDM13蛋白合成。本研究提供了在细胞压力条件下调节PRDM13蛋白合成的一种新的解释。  相似文献   

13.
14.
The 5'-noncoding region (5'-NCR) of the hepatitis C virus (HCV) RNA genome serves as an internal ribosome entry site (IRES) and mediates translation initiation in a cap-independent manner. Previously, we reported the interaction between La antigen and the HCV IRES, which appeared to occur in the context of initiator AUG. It was further shown that HCV IRES-mediated translation was stimulated in the presence of human La antigen. In this study, we have defined the cis- and trans-acting elements responsible for La-5'-NCR interactions and established the dependence of the HCV IRES efficiency on cellular La antigen. During the La-IRES interaction, initiator AUG but not the neighboring codons was found to be the direct target of La binding. The C terminus effector domain-dependent modulation of La binding to the HCV IRES is demonstrated by deletion and substitution mutagenesis of the protein. An RNA systematic evolution of ligands by exponential enrichment (SELEX), generated against La protein that selectively binds La in HeLa lysates and competes for the protein binding to the 5'-NCR, was used to demonstrate the requirement of La for the HCV IRES function in the context of mono- and dicistronic mRNAs. Sequestration of La antigen by the RNA SELEX in HeLa translation lysates blocked the HCV and poliovirus IRES-mediated translation in vitro. The functional requirement of La protein for the HCV IRES activity was further established in a liver-derived cell line and in an add-back experiment in which the inhibited IRES was rescued by recombinant human La. These results strongly argue for the novel role of La protein during selection of the initiator AUG and its participation during internal initiation of translation of the HCV RNA genome.  相似文献   

15.
A search for structurally similar cellular internal ribosome entry sites   总被引:1,自引:0,他引:1  
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function.  相似文献   

16.
Recent studies have shown that during apoptosis protein synthesis is inhibited and that this is in part due to the proteolytic cleavage of eukaryotic initiation factor 4G (eIF4G). Initiation of translation can occur either by a cap-dependent mechanism or by internal ribosome entry. The latter mechanism is dependent on a complex structural element located in the 5' untranslated region of the mRNA which is termed an internal ribosome entry segment (IRES). In general, IRES-mediated translation does not require eIF4E or full-length eIF4G. In order to investigate whether cap-dependent and cap-independent translation are reduced during apoptosis, we examined the expression of c-Myc during this process, since we have shown previously that the 5' untranslated region of the c-myc proto-oncogene contains an IRES. c-Myc expression was determined in HeLa cells during apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. We have demonstrated that the c-Myc protein is still expressed when more than 90% of the cells are apoptotic. The presence of the protein in apoptotic cells does not result from either an increase in protein stability or an increase in expression of c-myc mRNA. Furthermore, we show that during apoptosis initiation of c-myc translation occurs by internal ribosome entry. We have investigated the signaling pathways that are involved in this response, and cotransfection with plasmids which harbor either wild-type or constitutively active MKK6, a specific immediate upstream activator of p38 mitogen-activated protein kinase (MAPK), increases IRES-mediated translation. In addition, the c-myc IRES is inhibited by SB203580, a specific inhibitor of p38 MAPK. Our data, therefore, strongly suggest that the initiation of translation via the c-myc IRES during apoptosis is mediated by the p38 MAPK pathway.  相似文献   

17.
Ray PS  Das S 《Nucleic acids research》2002,30(20):4500-4508
Translation initiation in Coxsackievirus B3 (CVB3) occurs via ribosome binding to an internal ribosome entry site (IRES) located in the 5′-untranslated region (UTR) of the viral RNA. This unique mechanism of translation initiation requires various trans-acting factors from the host. We show that human La autoantigen (La) binds to the CVB3 5′-UTR and also demonstrate the dose-dependent effect of exogenously added La protein in stimulating CVB3 IRES-mediated translation. The requirement of La for CVB3 IRES mediated translation has been further demonstrated by inhibition of translation as a result of sequestering La and its restoration by exogenous addition of recombinant La protein. The abundance of La protein in various mouse tissue extracts has been probed using anti-La antibody. Pancreatic tissue, a target organ for CVB3 infection, was found to have a large abundance of La protein which was demonstrated to interact with the CVB3 5′-UTR. Furthermore, exogenous addition of pancreas extract to in vitro translation reactions resulted in a dose dependent stimulation of CVB3 IRES-mediated translation. These observations indicate the role of La in CVB3 IRES-mediated translation, and suggest its possible involvement in the efficient translation of the viral RNA in the pancreas.  相似文献   

18.
The extracellular matrix protein Laminin B1 (LamB1) regulates tumor cell migration and invasion. Carcinoma cells acquire invasive properties by epithelial to mesenchymal transition (EMT), which is a fundamental step in dissemination of metastatic cells from the primary tumor. Recently, we showed that enhanced translation of LamB1 upon EMT of malignant hepatocytes is mediated by an internal ribosome entry site (IRES). We demonstrated that the IRES transacting factor La binds the minimal IRES motif and positively modulates IRES activity of LamB1. Here, we show that platelet-derived growth factor (PDGF) enhances IRES activity of LamB1 by the increasing cytoplasmic localization of La during EMT. Accordingly, cells expressing dominant negative PDGF receptor display reduced cytoplasmic accumulation of La and show no elevation of IRES activity or endogenous LamB1 levels after stimulation with PDGF. Furthermore, La-mediated regulation of LamB1 IRES activity predominantly depends on MAPK/ERK signaling downstream of PDGF. Notably, LamB1 expression is not significantly downregulated by the impairment of the translation initiation factor eIF4E. In vivo, knockdown of La associated with decreased LamB1 expression and reduced tumor growth. Together, these data suggest that PDGF is required for the cytoplasmic accumulation of La that triggers IRES-dependent translation of LamB1 during EMT.  相似文献   

19.
The OCT4 gene is an important regulator of self-renewal in embryonic stem cells and can generate three spliced variants, OCT4A, OCT4B, and OCT4B1. In OCT4B, the single mRNA can generate at least three protein isoforms, OCT4B-164, OCT4B-190, and OCT4B-265, using alternative translation initiation. OCT4B-164 and OCT4B-190 can be translated by an internal ribosome entry site (IRES)-mediated mechanism. Our work previously demonstrated that nucleotides (nt) 102-326 contained an IRES. We have mapped a 30-nt sequence (nt 201-231), which is sufficient to promote internal initiation of translation of OCT4B mRNA. The minimal element contains a sequence unique to OCT4B as well as a sequence common to OCT4A and OCT4B, and the two are essential for IRES activity. Like other cellular IRESs, the IRES activity of the minimal element shows significant variation in different cell lines. The minimal element is also functional under oxidative stress.  相似文献   

20.
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号