首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44CD24?/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment.  相似文献   

2.
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24? phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24? phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.  相似文献   

3.
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.  相似文献   

4.
5.
In this study, we demonstrate that the differential behavior, including malignancy and chemosensitivity, of cancer stem‐like and non‐stem cells can be simultaneously distinguished in the same tumor in real time by color‐coded imaging. CD133+ Huh‐7 human hepatocellular carcinoma (HCC) cells were considered as cancer stem‐like cells (CSCs), and CD133? Huh‐7 cells were considered as non‐stem cancer cells (NSCCs). CD133+ cells were isolated by magnetic bead sorting after Huh‐7 cells were genetically labeled with green fluorescent protein (GFP) or red fluorescent protein (RFP). In this scheme, CD133+ cells were labeled with GFP and CD133? cells were labeled with RFP. CSCs had higher proliferative potential compared to NSCCs in vitro. The same number of GFP CSCs and the RFP NSCCs were mixed and injected subcutaneously or in the spleen of nude mice. CSCs were highly tumorigenic and metastatic as well as highly resistant to chemotherapy in vivo compared to NSCCs. The ability to specifically distinguish stem‐like cancer cells in vivo in real time provides a visual target for prevention of metastasis and drug resistance. J. Cell. Biochem. 111: 1035–1041, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
A cohort of genes associated with embryonic stem (ES) cell behaviour, including NANOG, are expressed in a number of human cancers. They form an ES‐like signature we first described in glioblastoma multiforme (GBM), a highly invasive and incurable brain tumour. We have also shown that HEDGEHOG‐GLI (HH‐GLI) signalling is required for GBM growth, stem cell expansion and the expression of this (ES)‐like stemness signature. Here, we address the function of NANOG in human GBMs and its relationship with HH‐GLI activity. We find that NANOG modulates gliomasphere clonogenicity, CD133+ stem cell cell behavior and proliferation, and is regulated by HH‐GLI signalling. However, GLI1 also requires NANOG activity forming a positive loop, which is negatively controlled by p53 and vice versa. NANOG is essential for GBM tumourigenicity in orthotopic xenografts and it is epistatic to HH‐GLI activity. Our data establish NANOG as a novel HH‐GLI mediator essential for GBMs. We propose that this function is conserved and that tumour growth and stem cell behaviour rely on the status of a functional GLI1‐NANOG‐p53 network.  相似文献   

7.
Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T‐cell‐expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR‐100, miR‐99a and miR‐10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR‐99a cooperated with miR‐150 to repress the expression of the Th17‐promoting factor mTOR. The comparably low expression of miR‐99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR‐150 could only repress Mtor in the presence of miR‐99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs.  相似文献   

8.
Long non‐coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1‐AS1 on breast cancer‐stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1‐AS1 was up‐regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1‐AS1 was significantly over‐expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss‐of‐functional indicated that, in BCSC cells (MDA‐MB‐231 CSC, MCF‐7 CSC), FEZF1‐AS1 knockdown reduced the CD44+/CD24? rate, the mammosphere‐forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1‐AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1‐AS1 modulated BCSC and Nanog expression through sponging miR‐30a, suggesting the regulation of FEZF1‐AS1/miR‐30a/Nanog. In summary, our study validate the important role of FEZF1‐AS1/miR‐30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer.  相似文献   

9.
Glioblastoma multiforme (GBM) is paradigmatic for the investigation of cancer stem cells (CSC) in solid tumors. The CSC hypothesis implies that tumors are maintained by a rare subpopulation of CSC that gives rise to rapidly proliferating progenitor cells. Although the presence of progenitor cells is crucial for the CSC hypothesis, progenitor cells derived from GBM CSC are yet uncharacterized. We analyzed human CD133+ CSC lines that were directly derived from CD133+ primary astrocytic GBM. In these CSC lines, CD133+/telomerasehigh CSC give rise to non-tumorigenic, CD133/telomeraselow progenitor cells. The proliferation of the progenitor cell population results in significant telomere shortening as compared to the CD133+ compartment comprising CSC. The average difference in telomere length as determined by a modified multi-color flow fluorescent in situ hybridization was 320 bp corresponding to 4–8 cell divisions. Taken together, we demonstrate that CD133+ primary astrocytic GBM comprise proliferating, CD133/telomeraselow progenitor cell population characterized by low telomerase activity and shortened telomeres as compared to CSC.  相似文献   

10.
Glioblastomas (GBMs) are the most lethal primary brain tumours. Increasing evidence shows that brain tumours contain the population of stem cells, so‐called cancer stem cells (CSCs). Stem cell marker CD133 was reported to identify CSC population in GBM. Further studies have indicated that CD133 negative cells exhibiting similar properties and are able to initiate the tumour, self‐renew and undergo multilineage differentiation. GBM is a highly heterogeneous tumour and may contain different stem cell populations with different functional properties. We characterized five GBM cell lines, established from surgical samples, according to the marker expression, proliferation and differentiation potential. CD133 positive cell lines showed increased proliferation rate in neurosphere condition and marked differentiation potential towards neuronal lineages. Whereas two cell lines low‐expressing CD133 marker showed mesenchymal properties in vitro, that is high proliferation rate in serum condition and differentiation in mesenchymal cell types. Further, we compared therapy resistance capacity of GBM cell lines treated with hydroxyurea. Our results suggest that CSC concept is more complex than it was believed before, and CD133 could not define entire stem cell population within GBM. At least two different subtypes of GBM CSCs exist, which may have different biological characteristics and imply different therapeutic strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.  相似文献   

13.
To obtain microRNA (miRNA) profile and clarify their biological function in tumorigenic Sca‐1+CD34+ cells during carcinogenesis of lung adenocarcinoma. After intranasal infection with recombinant Adeno‐Cre viruses (AdV‐Cre), lung adenocarcinoma was identified pathologically in Lox‐stop‐lox Kras (LSL‐Kras) G12D mice. Sca‐1+CD34+ cells were sorted by flow cytometry and tested for tumor‐initiating ability, self‐renewal and tumorigenicity. MiRNA profiles were obtained using microarray and further confirmed by real‐time RT‐PCR (qRT‐PCR). MiRNA functions were predicted bioinformatically, and miR‐294 function was verified to explore its role in tumor migration and invasion. Lung adenocarcinoma was induced in LSL‐Kras G12D mice within 30 days. In vivo, the tumorigenicity of Sca‐1+CD34+ cells was 25 times stronger than Sca‐1?CD34? cells. During tumorigenesis of lung adenocarcinoma, the expression of 145 miRNAs in Sca‐1+CD34+ cells increased and 72 miRNAs decreased (P < 0.01). Four successively up‐regulated miRNAs (miR‐15a*, miR‐203, miR‐294 and miR‐295*) and three successively down‐regulated ones (miR‐19b, miR‐483 and miR‐615–5p) were identified. Among them, miR‐294 could constitutively bind to 3'‐UTR of matrix metalloproteinase 3 (MMP3), and down‐regulate MMP3 protein expression. MiR‐294 also significantly inhibited migration and invasion of Lewis lung cancer cells. MiRNAs are characteristically expressed in tumor‐initiating Sca‐1+CD34+ cells of lung adenocarcinoma, and may play important roles during the carcinogenesis of lung adenocarcinoma. J. Cell. Biochem. 116: 458–466, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
  相似文献   

14.
Accumulating evidence has shown that miR‐429 plays an important role in the development and progression of tumour. However, the role of miR‐429 in glioblastoma multiforme (GBM) remains largely unknown. The present study is designed to investigate the function of miR‐429 in GBM and to explore the molecular mechanism underlying its function. The expression level of miR‐429 was detected in GBM tissues and cell lines by quantitative real‐time polymerase chain reaction. The effect of overexpression of miR‐429 on in vitro cell proliferation, apoptosis and invasion was examined. Western blot analysis was used to detect the influence of miR‐429 on the expression of target gene, and Pearson analysis was used to calculate the correlation between the expression of targets gene and the miR‐429 in GBM tissues. Our study shows that miR‐429 is downregulated in GBM tissues compared with noncancerous tissues (P < .01). In addition, the expression of miR‐429 in GBM cell lines is also significantly lower (P < .01). Enforced expression of miR‐429 inhibits GBM cells proliferation, induces apoptosis and suppresses invasion and leads to the downregulation of the SOX2 protein. Moreover, the expression level of miR‐429 in GBM tissues shows inverse relationship with the expression level of SOX2 protein. Our findings suggest that miR‐429 represents a potential tumour‐suppressive miRNA and plays an important role in GBM progression by directly targeting SOX2.  相似文献   

15.
Pancreatic cancer is a deadly disease with a poor prognosis. Recently, miRNAs have been reported to be abnormally expressed in several cancers and play a role in cancer development and progression. However, the role of miRNA in cancer stem cells remains unclear. Therefore, our aim was to investigate the role of miRNA in the CD133+ pancreatic cancer cell line Capan-1M9 because CD133 is a putative marker of pancreatic cancer stem cells. Using miRNA microarray, we found that the expression level of the miR-30 family decreased in CD133 genetic knockdown shCD133 Capan-1M9 cells. We focused on miR-30a, -30b, and -30c in the miR-30 family and created pancreatic cancer cell sublines, each transfected with these miRNAs. High expression of miR-30a, -30b, or -30c had no effect on cell proliferation and sphere forming. In contrast, these sublines were resistant to gemcitabine, which is a standard anticancer drug for pancreatic cancer, and in addition, promoted migration and invasion. Moreover, mesenchymal markers were up-regulated by these miRNAs, suggesting that mesenchymal phenotype is associated with an increase in migration and invasion. Thus, our study demonstrated that high expression of the miR-30 family modulated by CD133 promotes migratory and invasive abilities in CD133+ pancreatic cancer cells. These findings suggest that targeted therapies to the miR-30 family contribute to the development of novel therapies for CD133+ pancreatic cancer stem cells.  相似文献   

16.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

17.
Breast cancer stem cells (BCSCs) have been considered responsible for cancer progression, recurrence, metastasis and drug resistance. However, the mechanisms by which cells acquire self‐renewal and chemoresistance properties are remaining largely unclear. Herein, we evaluated the role of miR‐708 and metformin in BCSCs, and found that the expression of miR‐708 is significantly down‐regulated in BCSCs and tumour tissues, and correlates with chemotherapy response and prognosis. Moreover, miR‐708 markedly inhibits sphere formation, CD44+/CD24? ratio, and tumour initiation and increases chemosensitivity of BCSCs. Mechanistically, miR‐708 directly binds to cluster of differentiation 47 (CD47), and regulates tumour‐associated macrophage‐mediated phagocytosis. On the other hand, CD47 is essential for self‐renewal, tumour initiation and chemoresistance of BCSCs, and correlates with the prognosis of breast cancer patients. In addition, the anti‐type II diabetes drug metformin are found to be involved in the miR‐708/CD47 signalling pathway. Therefore, our study demonstrated that miR‐708 plays an important tumour suppressor role in BCSCs self‐renewal and chemoresistance, and the miR‐708/CD47 regulatory axis may represent a novel therapeutic mechanism of metformin in BCSCs.  相似文献   

18.
The underlying functions of miR‐206, miR‐133a, miR‐27b, and miR‐21, and their link to the estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AhR) signaling pathways remain largely unexplored. In this study, we detect the expression of miR‐206, miR‐133a, miR‐27b, and miR‐21 in MCF‐7 through quantificational real‐time polymerase chain reaction assay along with the activation/inhibition of ERα and AhR receptors. Aside from this, cell proliferation and migration as well as AhR‐dependent CYP1A1 enzyme activity were measured. Here, we found that the forced increased expression of miR‐206, miR‐133a, and miR‐27b were closely associated with the suppression of MCF‐7 cell proliferation and migration. The anti‐proliferative‐metastatic effect of miR‐206, miR‐133a, and miR‐27b was probably mediated by targeting the ERα and AhR signaling pathways. Considered together, our study indicated that the overexpression of miR‐206, miR‐133a, and miR‐27b might be potential biomarkers for prognosis and therapeutic strategies in breast cancer.  相似文献   

19.
20.
This study was designed to detecting the influences of lncRNA MEG3 in prostate cancer. Aberrant lncRNAs expression profiles of prostate cancer were screened by microarray analysis. The qRT‐PCR and Western blot were employed to investigating the expression levels of lncRNA MEG3, miR‐9‐5p and QKI‐5. The luciferase reporter assay was utilized to testifying the interactions relationship among these molecules. Applying CCK‐8 assay, wound healing assay, transwell assay and flow cytometry in turn, the cell proliferation, migration and invasion abilities as well as apoptosis were measured respectively. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer tissues and cells and could inhibit the expression of miR‐9‐5p, whereas miR‐9‐5p down‐regulated QKI‐5 expression. Overexpressed MEG3 and QKI‐5 could decrease the abilities of proliferation, migration and invasion in prostate cancer cells effectively and increased the apoptosis rate. On the contrary, miR‐9‐5p mimics presented an opposite tendency in prostate cancer cells. Furthermore, MEG3 inhibited tumour growth and up‐regulated expression of QKI‐5 in vivo. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer and impacted the abilities of cell proliferation, migration and invasion, and cell apoptosis rate, this regulation relied on regulating miR‐9‐5p and its targeting gene QKI‐5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号