首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Henzl MT  Tanner JJ  Tan A 《Proteins》2011,79(3):752-764
Birds express two β-parvalbumin isoforms, parvalbumin 3 and avian thymic hormone (ATH). Parvalbumin 3 from chicken (CPV3) is identical to rat β-parvalbumin (β-PV) at 75 of 108 residues. CPV3 displays intermediate Ca(2+) affinity--higher than that of rat β-parvalbumin, but lower than that of ATH. As in rat β-PV, the attenuation of affinity is associated primarily with the CD site (residues 41-70), rather than the EF site (residues 80-108). Structural data for rat α- and β-parvalbumins suggest that divalent ion affinity is correlated with the similarity of the unliganded and Ca(2+)-bound conformations. We herein present a comparison of the solution structures of Ca(2+)-free and Ca(2+)-bound CPV3. Although the structures are generally similar, the conformations of residues 47 to 50 differ markedly in the two protein forms. These residues are located in the C helix, proximal to the CD binding loop. In response to Ca(2+) removal, F47 experiences much greater solvent accessibility. The side-chain of R48 assumes a position between the C and D helices, adjacent to R69. Significantly, I49 adopts an interior position in the unliganded protein that allows association with the side-chain of L50. Concomitantly, the realignment of F66 and F70 facilitates their interaction with I49 and reduces their contact with residues in the N-terminal AB domain. This reorganization of the hydrophobic core, although less profound, is nevertheless reminiscent of that observed in rat β-PV. The results lend further support to the idea that Ca(2+) affinity correlates with the structural similarity of the apo- and bound parvalbumin conformations.  相似文献   

2.
3.
Saurav Mallik  Sudip Kundu 《Proteins》2017,85(7):1183-1189
Is the order in which biomolecular subunits self‐assemble into functional macromolecular complexes imprinted in their sequence‐space? Here, we demonstrate that the temporal order of macromolecular complex self‐assembly can be efficiently captured using the landscape of residue‐level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high‐affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183–1189. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Truong AB  Masters SC  Yang H  Fu H 《Proteins》2002,49(3):321-325
14-3-3 proteins are a family of conserved dimeric molecules that interact with a broad range of target proteins, most of which contain phosphoserine/threonine. The amphipathic groove of 14-3-3 is the main structural feature involved in mediating its associations. We have studied another domain of 14-3-3, the C-terminal loop, to determine what role it plays in ligand interaction. A truncated form of 14-3-3zeta lacking this C-terminal loop was generated and found to bind with higher affinity than the wild-type 14-3-3zeta protein to the ligands Raf-1 and Bad. Interestingly, the truncated 14-3-3zeta also showed increased association with the 14-3-3 binding-deficient Bad/S136A mutant. Taken together, these data support a role for the C-terminal loop as a general inhibitor of 14-3-3/ligand interactions. This may provide a mechanism by which inappropriate associations with 14-3-3 are prevented.  相似文献   

5.
In addition to the well‐established sense‐antisense complementarity abundantly present in the nucleic acid world and serving as a basic principle of the specific double‐helical structure of DNA, production of mRNA, and genetic code‐based biosynthesis of proteins, sense‐antisense complementarity is also present in proteins, where sense and antisense peptides were shown to interact with each other with increased probability. In nucleic acids, sense‐antisense complementarity is achieved via the Watson‐Crick complementarity of the base pairs or nucleotide pairing. In proteins, the complementarity between sense and antisense peptides depends on a specific hydropathic pattern, where codons for hydrophilic and hydrophobic amino acids in a sense peptide are complemented by the codons for hydrophobic and hydrophilic amino acids in its antisense counterpart. We are showing here that in addition to this pattern of the complementary hydrophobicity, sense and antisense peptides are characterized by the complementary order‐disorder patterns and show complementarity in sequence distribution of their disorder‐based interaction sites. We also discuss how this order‐disorder complementarity can be related to protein evolution.  相似文献   

6.
Protein-protein interactions were measured for ovalbumin and for lysozyme in aqueous salt solutions. Protein-protein interactions are correlated with a proposed potential of mean force equal to the free energy to desolvate the protein surface that is made inaccessible to the solvent due to the protein-protein interaction. This energy is calculated from the surface free energy of the protein that is determined from protein-salt preferential-interaction parameter measurements. In classical salting-out behavior, the protein-salt preferential interaction is unfavorable. Because addition of salt raises the surface free energy of the protein according to the surface-tension increment of the salt, protein-protein attraction increases, leading to a reduction in solubility. When the surface chemistry of proteins is altered by binding of a specific ion, salting-in is observed when the interactions between (kosmotrope) ion-protein complexes are more repulsive than those between the uncomplexed proteins. However, salting-out is observed when interactions between (chaotrope) ion-protein complexes are more attractive than those of the uncomplexed proteins.  相似文献   

7.
The subunit interfaces of 122 homodimers of known three-dimensional structure are analyzed and dissected into sets of surface patches by clustering atoms at the interface; 70 interfaces are single-patch, the others have up to six patches, often contributed by different structural domains. The average interface buries 1,940 A2 of the surface of each monomer, contains one or two patches burying 600-1,600 A2, is 65% nonpolar and includes 18 hydrogen bonds. However, the range of size and of hydrophobicity is wide among the 122 interfaces. Each interface has a core made of residues with atoms buried in the dimer, surrounded by a rim of residues with atoms that remain accessible to solvent. The core, which constitutes 77% of the interface on average, has an amino acid composition that resembles the protein interior except for the presence of arginine residues, whereas the rim is more like the protein surface. These properties of the interfaces in homodimers, which are permanent assemblies, are compared to those of protein-protein complexes where the components associate after they have independently folded. On average, subunit interfaces in homodimers are twice larger than in complexes, and much less polar due to the large fraction belonging to the core, although the amino acid compositions of the cores are similar in the two types of interfaces.  相似文献   

8.
Polcalcins are small EF‐hand proteins believed to assist in regulating pollen‐tube growth. Phl p 7, from timothy grass (Phleum pratense), crystallizes as a domain‐swapped dimer at low pH. This study describes the solution structures of the recombinant protein in buffered saline at pH 6.0, containing either 5.0 mM EDTA, 5.0 mM Mg2+, or 100 μM Ca2+. Phl p 7 is monomeric in all three ligation states. In the apo‐form, both EF‐hand motifs reside in the closed conformation, with roughly antiparallel N‐ and C‐terminal helical segments. In 5.0 mM Mg2+, the divalent ion is bound by EF‐hand 2, perturbing interhelical angles and imposing more regular helical structure. The structure of Ca2+‐bound Phl p 7 resembles that previously reported for Bet v 4—likewise exposing apolar surface to the solvent. Occluded in the apo‐ and Mg2+‐bound forms, this surface presumably provides the docking site for Phl p 7 targets. Unlike Bet v 4, EF‐hand 2 in Phl p 7 includes five potential anionic ligands, due to replacement of the consensus serine residue at –x (residue 55 in Phl p 7) with aspartate. In the Phl p 7 crystal structure, D55 functions as a helix cap for helix D. In solution, however, D55 apparently serves as a ligand to the bound Ca2+. When Mg2+ resides in site 2, the D55 carboxylate withdraws to a distance consistent with a role as an outer‐sphere ligand. 15N relaxation data, collected at 600 MHz, indicate that backbone mobility is limited in all three ligation states. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
Gao M  Skolnick J 《Proteins》2011,79(5):1623-1634
With the development of many computational methods that predict the structural models of protein-protein complexes, there is a pressing need to benchmark their performance. As was the case for protein monomers, assessing the quality of models of protein complexes is not straightforward. An effective scoring scheme should be able to detect substructure similarity and estimate its statistical significance. Here, we focus on characterizing the similarity of the interfaces of the complex and introduce two scoring functions. The first, the interfacial Template Modeling score (iTM-score), measures the geometric distance between the interfaces, while the second, the Interface Similarity score (IS-score), evaluates their residue-residue contact similarity in addition to their geometric similarity. We first demonstrate that the IS-score is more suitable for assessing docking models than the iTM-score. The IS-score is then validated in a large-scale benchmark test on 1562 dimeric complexes. Finally, the scoring function is applied to evaluate docking models submitted to the Critical Assessment of Prediction of Interactions (CAPRI) experiments. While the results according to the new scoring scheme are generally consistent with the original CAPRI assessment, the IS-score identifies models whose significance was previously underestimated.  相似文献   

11.
Plasma C‐reactive protein (CRP) concentration is associated positively with cardiovascular risk, including dyslipidemia. We suggested a regulating role of CRP on pro‐protein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low‐density lipoprotein (LDL) metabolism, and demonstrated the PCSK9 as a pathway linking CRP and LDL regulation. Firstly, experiments were carried out in the presence of human CRP on the protein and mRNA expression of PCSK9 and LDL receptor (LDLR) in human hepatoma cell line HepG2 cells. Treatment with CRP (10 μg/ml) enhanced significantly the mRNA and protein expression of PCSK9 and suppressed the expression of LDLR. Of note, a late return of LDLR mRNA levels occurred at 12 hrs, while the LDLR protein continued to decrease at 24 hrs, suggesting that the late decrease in LDLR protein levels was unlikely to be accounted for the decrease in LDL mRNA. Secondly, the role of PCSK9 in CRP‐induced LDLR decrease and the underlying pathways were investigated. As a result, the inhibition of PCSK9 expression by small interfering RNA (siRNA) returned partly the level of LDLR protein and LDL uptake during CRP treatment; CRP‐induced PCSK9 increase was inhibited by the p38MAPK inhibitor, SB203580, resulting in a significant rescue of LDLR protein expression and LDL uptake; the pathway was involved in hepatocyte nuclear factor 1α (HNF1α) but not sterol responsive element‐binding proteins (SREBPs) preceded by the phosphorylation of p38MAPK. These findings indicated that CRP increased PCSK9 expression by activating p38MAPK‐HNF1α pathway, with a certain downstream impairment in LDL metabolism in HepG2 cells.  相似文献   

12.
Ion channel‐coupled receptors (ICCR) are artificial proteins built from a G protein‐coupled receptor and an ion channel. Their use as molecular biosensors is promising in diagnosis and high‐throughput drug screening. The concept of ICCR was initially validated with the combination of the muscarinic receptor M2 with the inwardly rectifying potassium channel Kir6.2. A long protein engineering phase has led to the biochemical characterization of the M2‐Kir6.2 construct. However, its molecular mechanism remains to be elucidated. In particular, it is important to determine how the activation of M2 by its agonist acetylcholine triggers the modulation of the Kir6.2 channel via the M2‐Kir6.2 linkage. In the present study, we have developed and validated a computational approach to rebuild models of the M2‐Kir6.2 chimera from the molecular structure of M2 and Kir6.2. The protocol was first validated on the known protein complexes of the μ‐opioid Receptor, the CXCR4 receptor and the Kv1.2 potassium channel. When applied to M2‐Kir6.2, our protocol produced two possible models corresponding to two different orientations of M2. Both models highlights the role of the M2 helices I and VIII in the interaction with Kir6.2, as well as the role of the Kir6.2 N‐terminus in the channel opening. Those two hypotheses will be explored in a future experimental study of the M2‐Kir6.2 construct. Proteins 2014; 82:1694–1707. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
Dihydropyrimidinase-like protein 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and, possibly, neuronal regeneration. In primary cortical cultures, glutamate (NMDA) excitotoxicity and oxidative stress (H2O2) caused the cleavage of DPYSL3, resulting in the appearance of a doublet of 62 kDa and 60 kDa. Pre-treatment of cell cultures with calpain inhibitors, but not caspase 3 inhibitor, before exposure to NMDA or H2O2 completely blocked the appearance of the doublet, suggesting calpain-mediated truncation. Furthermore, in vitro digestion of DPYSL3 in cell lysate with purified calpain revealed a cleavage product identical to that observed in NMDA- and H2O2-treated cells, and its appearance was blocked by calpain inhibitors. Analysis of the DPYSL3 protein sequence revealed a possible cleavage site for calpain (Val-Arg-Ser) on the C-terminus of DPYSL3. Collectively, these studies demonstrate for the first time that DPYSL3 is a calpain substrate. The physiological relevance of the truncated DPYSL3 protein remains to be determined.  相似文献   

15.
Kim Y  Subramaniam S 《Proteins》2006,62(4):1115-1124
Phylogenetic profiles encode patterns of presence or absence of genes across genomes, and these profiles can be used to assign functional relationships to nonhomologous pairs of proteins (Pellegrini et al., Proc Natl Acad Sci USA 1999;96:4284-4288). Although it is well known that many proteins were created from combinations of domains, most of the existing implementations of phylogenetic profiles do not consider this fact. Here, we introduce an extension that considers the multidomain nature of proteins and test the method against the known interaction data sets. Whereas earlier implementations associated one entire sequence with one protein phylogenetic profile (Single-Profile), our method instead breaks the sequence into a set of segments of predetermined size and constructs a separate profile for each segment (Multiple-Profile). The results show that the Multiple-Profile method performs as well as the Single-Profile method. However, the two methods share, surprisingly, a small fraction of their predictions, indicating that the Multiple-Profile method can detect known interactions missed by the Single-Profile method. Thus, the Multiple-Profile method can be used with other methods to determine functional relationships on a genome scale with wider coverage.  相似文献   

16.
Penicillin-binding protein 5 (PBP5) is a DD-carboxypeptidase, which cleaves the terminal D-alanine from the muramyl pentapeptide in the peptidoglycan layer of Escherichia coli and other bacteria. In doing so, it varies the substrates for transpeptidation and plays a key role in maintaining cell shape. In this study, we have analyzed the oligomeric state of PBP5 in detergent and in its native environment, the inner membrane. Both approaches indicate that PBP5 exists as a homo-oligomeric complex, most likely as a homo-dimer. As the crystal structure of the soluble domain of PBP5 (i.e., lacking the membrane anchor) shows a monomer, we used our experimental data to generate a model of the homo-dimer. This model extends our understanding of PBP5 function as it suggests how PBP5 can interact with the peptidoglycan layer. It suggests that the stem domains interact and the catalytic domains have freedom to move from the position observed in the crystal structure. This would allow the catalytic domain to have access to pentapeptides at different distances from the membrane.  相似文献   

17.
18.
A reversible green fluorogenic protein‐fragment complementation assay was developed based on the crystal structure of UnaG, a recently discovered fluorescent protein. In living mammalian cells, the nonfluorescent fragments complemented and rapidly became fluorescent upon rapamycin‐induced FKBP and Frb protein interaction, and lost fluorescence when the protein interaction was inhibited. This reversible fluorogenic reporter, named uPPI [UnaG‐based protein‐protein interaction (PPI) reporter], uses bilirubin (BR) as the chromophore and requires no exogenous cofactor. BR is an endogenous molecule in mammalian cells and is not fluorescent by itself. uPPI may have many potential applications in visualizing spatiotemporal dynamics of PPIs.  相似文献   

19.
Allosteric HIV‐1 integrase (IN) inhibitors (ALLINIs) bind at the dimer interface of the IN catalytic core domain (CCD), and potently inhibit HIV‐1 by promoting aberrant, higher‐order IN multimerization. Little is known about the structural organization of the inhibitor‐induced IN multimers and important questions regarding how ALLINIs promote aberrant IN multimerization remain to be answered. On the basis of physical chemistry principles and from our analysis of experimental information, we propose that inhibitor‐induced multimerization is mediated by ALLINIs directly promoting inter‐subunit interactions between the CCD dimer and a C‐terminal domain (CTD) of another IN dimer. Guided by this hypothesis, we have built atomic models of inter‐subunit interfaces in IN multimers by incorporating information from hydrogen‐deuterium exchange (HDX) measurements to drive protein‐protein docking. We have also developed a novel free energy simulation method to estimate the effects of ALLINI binding on the association of the CCD and CTD. Using this structural and thermodynamic modeling approach, we show that multimer inter‐subunit interface models can account for several experimental observations about ALLINI‐induced multimerization, including large differences in the potencies of various ALLINIs, the mechanisms of resistance mutations, and the crucial role of solvent exposed R‐groups in the high potency of certain ALLINIs. Our study predicts that CTD residues Tyr226, Trp235 and Lys266 are involved in the aberrant multimer interfaces. The key finding of the study is that it suggests the possibility of ALLINIs facilitating inter‐subunit interactions between an external CTD and the CCD‐CCD dimer interface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号