首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Long noncoding RNAs (lncRNAs) play roles in the development and progression of many cancers; however, the contributions of lncRNAs to human gallbladder cancer (GBC) remain largely unknown. In this study, we identify a group of differentially expressed lncRNAs in human GBC tissues, including prognosis‐associated gallbladder cancer lncRNA (lncRNA‐PAGBC), which we find to be an independent prognostic marker in GBC. Functional analysis indicates that lncRNA‐PAGBC promotes tumour growth and metastasis of GBC cells. More importantly, as a competitive endogenous RNA (ceRNA), lncRNA‐PAGBC competitively binds to the tumour suppressive microRNAs miR‐133b and miR‐511. This competitive role of lncRNA‐PAGBC is required for its ability to promote tumour growth and metastasis and to activate the AKT/mTOR pathway. Moreover, lncRNA‐PAGBC interacts with polyadenylate binding protein cytoplasmic 1 (PABPC1) and is stabilized by this interaction. This work provides novel insight on the molecular pathogenesis of GBC.  相似文献   

3.
4.
5.
6.
7.
Long non‐coding RNAs (lncRNAs) are involved in various pathophysiologic processes and human diseases. However, their dynamics and corresponding functions in pulmonary fibrosis remain poorly understood. In this study, portions of lncRNAs adjacent or homologous to protein‐coding genes were determined by searching the UCSC genome bioinformatics database. This was found to be potentially useful for exploring lncRNA functions in disease progression. Previous studies showed that competing endogenous RNA (ceRNA) hypothesis is another method to predict lncRNA function. However, little is known about the function of ceRNA in pulmonary fibrosis. In this study, we selected two differentially expressed lncRNAs MRAK088388 and MRAK081523 to explore their regulatory mechanisms. MRAK088388 and MRAK081523 were analysed as long‐intergenic non‐coding RNAs (lincRNAs), and identified as orthologues of mouse lncRNAs AK088388 and AK081523, respectively. qRT‐PCR and in situ hybridization (ISH) showed that they were significantly up‐regulated, and located in the cytoplasm of interstitial lung cells. We also showed that MRAK088388 and N4bp2 had the same miRNA response elements (MREs) for miR‐200, miR‐429, miR‐29, and miR‐30, whereas MRAK081523 and Plxna4 had the same MREs for miR‐218, miR‐141, miR‐98, and let‐7. Moreover, the expression levels of N4bp2 and Plxna4 significantly increased in fibrotic rats, and were highly correlated with those of MRAK088388 and MRAK081523, respectively. Among their shared miRNAs, miR‐29b‐3p and let‐7i‐5p decreased in the model group, and were negatively correlated with the expression of MRAK088388 and MRAK081523, respectively. MRAK088388 and MRAK081523 could regulate N4bp2 and Plxna4 expression by sponging miR‐29b‐3p and let‐7i‐5p, respectively, and possessed regulatory functions as ceRNAs. Thus, our study may provide insights into the functional interactions of lncRNA, miRNA and mRNA, and lead to new theories for the pathogenesis and treatment of pulmonary fibrosis.  相似文献   

8.
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.  相似文献   

9.
10.
11.
Pathological cardiac hypertrophy (CH) is a key factor leading to heart failure and ultimately sudden death. Long non‐coding RNAs (lncRNAs) are emerging as a new player in gene regulation relevant to a wide spectrum of human disease including cardiac disorders. Here, we characterize the role of a specific lncRNA named cardiac hypertrophy‐associated regulator (CHAR) in CH and delineate the underlying signalling pathway. CHAR was found markedly down‐regulated in both in vivo mouse model of cardiac hypertrophy induced by pressure overload and in vitro cellular model of cardiomyocyte hypertrophy induced by angiotensin II (AngII) insult. CHAR down‐regulation alone was sufficient to induce hypertrophic phenotypes in healthy mice and neonatal rat ventricular cells (NRVCs). Overexpression of CHAR reduced the hypertrophic responses. CHAR was found to act as a competitive endogenous RNA (ceRNA) to down‐regulate miR‐20b that we established as a pro‐hypertrophic miRNA. We experimentally established phosphatase and tensin homolog (PTEN), an anti‐hypertrophic signalling molecule, as a target gene for miR‐20b. We found that miR‐20b induced CH by directly repressing PTEN expression and indirectly increasing AKT activity. Moreover, CHAR overexpression mitigated the repression of PTEN and activation of AKT by miR‐20b, and as such, it abrogated the deleterious effects of miR‐20b on CH. Collectively, this study characterized a new lncRNA CHAR and unravelled a new pro‐hypertrophic signalling pathway: lncRNA‐CHAR/miR‐20b/PTEN/AKT. The findings therefore should improve our understanding of the cellular functionality and pathophysiological role of lncRNAs in the heart.  相似文献   

12.
Differential expression analysis has led to the identification of important biomarkers in oesophageal squamous cell carcinoma (ESCC). Despite enormous contributions, it has not harnessed the full potential of gene expression data, such as interactions among genes. Differential co‐expression analysis has emerged as an effective tool that complements differential expression analysis to provide better insight of dysregulated mechanisms and indicate key driver genes. Here, we analysed the differential co‐expression of lncRNAs and protein‐coding genes (PCGs) between normal oesophageal tissue and ESCC tissues, and constructed a lncRNA‐PCG differential co‐expression network (DCN). DCN was characterized as a scale‐free, small‐world network with modular organization. Focusing on lncRNAs, a total of 107 differential lncRNA‐PCG subnetworks were identified from the DCN by integrating both differential expression and differential co‐expression. These differential subnetworks provide a valuable source for revealing lncRNA functions and the associated dysfunctional regulatory networks in ESCC. Their consistent discrimination suggests that they may have important roles in ESCC and could serve as robust subnetwork biomarkers. In addition, two tumour suppressor genes (AL121899.1 and ELMO2), identified in the core modules, were validated by functional experiments. The proposed method can be easily used to investigate differential subnetworks of other molecules in other cancers.  相似文献   

13.
Long non‐coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B‐cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock‐down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non‐small cell lung carcinoma, indicative of its tissue‐specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it.  相似文献   

14.
Heart failure has become one of the top causes of death worldwide. It is increasing evidence that lncRNAs play important roles in the pathology processes of multiple cardiovascular diseases. Additionally, lncRNAs can function as ceRNAs by sponging miRNAs to affect the expression level of mRNAs, implicating in numerous biological processes. However, the functional roles and regulatory mechanisms of lncRNAs in heart failure are still unclear. In our study, we constructed a heart failure‐related lncRNA‐mRNA network by integrating probe re‐annotation pipeline and miRNA‐target interactions. Firstly, some lncRNAs that had the central topological features were found in the heart failure‐related lncRNA‐mRNA network. Then, the lncRNA‐associated functional modules were identified from the network, using bidirectional hierarchical clustering. Some lncRNAs that involved in modules were demonstrated to be enriched in many heart failure‐related pathways. To investigate the role of lncRNA‐associated ceRNA crosstalks in certain disease or physiological status, we further identified the lncRNA‐associated dysregulated ceRNA interactions. And we also performed a random walk algorithm to identify more heart failure‐related lncRNAs. All these lncRNAs were verified to show a strong diagnosis power for heart failure. These results will help us to understand the mechanism of lncRNAs in heart failure and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.  相似文献   

15.
The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real‐time polymerase chain reaction technique. LncRNA‐mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria‐related differentially expressed mRNA. Among all lncRNAs and their cis‐acting mRNAs, 41 lncRNAs‐mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.  相似文献   

16.
17.
A growing body of studies has demonstrated that long non‐coding RNA (lncRNA) are regarded as the primary section of the ceRNA network. This is thought to be the case owing to its regulation of protein‐coding gene expression by functioning as miRNA sponges. However, functional roles and regulatory mechanisms of lncRNA‐mediated ceRNA in cervical squamous cell carcinoma (CESC), as well as their use for potential prediction of CESC prognosis, remains unknown. The aberrant expression profiles of mRNA, lncRNA, and miRNA of 306 cervical squamous cancer tissues and three adjacent cervical tissues were obtained from the TCGA database. A lncRNA‐mRNA‐miRNA ceRNA network in CESC was constructed. Meanwhile, Gene Ontology (GO) and KEGG pathway analysis were performed using Cytoscape plug‐in BinGo and DAVID database. We identified a total of 493 lncRNA, 70 miRNA, and 1921 mRNA as differentially expressed profiles. An aberrant lncRNA‐mRNA‐miRNA ceRNA network was constructed in CESC, it was composed of 50 DElncRNA, 18 DEmiRNA, and 81 DEmRNA. According to the overall survival analysis, 3 out of 50 lncRNA, 10 out of 81 mRNA, and 1 out of 18 miRNA functioned as prognostic biomarkers for patients with CESC (P value < 0.05). We extracted the sub‐network in the ceRNA network and found that two novel lncRNA were recognized as key genes. These included lncRNA MEG3 and lncRNA ADAMTS9‐AS2. The present study provides a new insight into a better understanding of the lncRNA‐related ceRNA network in CESC, and the novel recognized ceRNA network will help us to improve our understanding of lncRNA‐mediated ceRNA regulatory mechanisms in the pathogenesis of CESC.  相似文献   

18.
It is an increasing evidence that long non‐coding RNAs (lncRNAs) are involved in tumour initiation and progression. Here, we analysed RNA‐sequencing data from the Cancer Genome Atlas (TCGA) datasets. Totally, 1176lncRNAs, 245miRNAs and 2081mRNAs were identified to be differentially expressed (DE) in colon cancer tissues compared with normal tissues. CASC21, a novel lncRNA located in 8q24.21 locus, was significantly overexpressed in 30 colon cancer tissues compared with matched normal tissues by qRT‐PCR assay. CASC21 tended to higher expression as the increase of the tumour‐node‐metastasis (TNM) classification. Functionally, CASC21 promoted cell proliferation by regulating cell cycle and enhanced tumour metastasis by epithelial‐mesenchymal transition (EMT) in colon cancer. Mechanism study indicated that CASC21 might be involved in activating WNT/β‐catenin pathway in colon cancer. In addition, we also built a competing endogenous RNA (ceRNNA) network by bioinformatic analysis using TCGA datasets. Together, our results not only provide novel lncRNAs as potential candidates for further study but also prove that CASC21 is an oncogenic regulator through activating WNT/β‐catenin signalling in colon cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号