首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Background

Amyotrophic lateral sclerosis (ALS) is incurable and characterized by progressive paralysis of the muscles of the limbs, speech and swallowing, and respiration due to the progressive degeneration of voluntary motor neurons. Clinically indistinguishable ALS can be caused by genetic mutations of Cu/Zn superoxide dismutase (SOD1), TAR-DNA binding protein 43 (TDP43), or fused in sarcoma/translocated in liposarcoma (FUS/TLS), or can occur in the absence of known mutation as sporadic disease. In this study, we tested the hypothesis that FUS/TLS and TDP43 gain new pathogenic functions upon aberrant accumulation in the cytosol that directly or indirectly include misfolding of SOD1.

Methodology/Principal Findings

Patient spinal cord necropsy immunohistochemistry with SOD1 misfolding-specific antibodies revealed misfolded SOD1 in perikarya and motor axons of SOD1-familial ALS (SOD1-FALS), and in motor axons of R521C-FUS FALS and sporadic ALS (SALS) with cytoplasmic TDP43 inclusions. SOD1 misfolding and oxidation was also detected using immunocytochemistry and quantitative immunoprecipitation of human neuroblastoma SH-SY5Y cells as well as cultured murine spinal neural cells transgenic for human wtSOD1, which were transiently transfected with human cytosolic mutant FUS or TDP43, or wtTDP43.

Conclusion/Significance

We conclude that cytosolic mislocalization of FUS or TDP43 in vitro and ALS in vivo may kindle wtSOD1 misfolding in non-SOD1 FALS and SALS. The lack of immunohistochemical compartmental co-localization of misfolded SOD1 with cytosolic TDP43 or FUS suggests an indirect induction of SOD1 misfolding followed by propagation through template directed misfolding beyond its site of inception. The identification of a final common pathway in the molecular pathogenesis of ALS provides a treatment target for this devastating disease.  相似文献   

2.
TDP‐43 is an RNA‐binding protein active in splicing that concentrates into membraneless ribonucleoprotein granules and forms aggregates in amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Although best known for its predominantly disordered C‐terminal domain which mediates ALS inclusions, TDP‐43 has a globular N‐terminal domain (NTD). Here, we show that TDP‐43 NTD assembles into head‐to‐tail linear chains and that phosphomimetic substitution at S48 disrupts TDP‐43 polymeric assembly, discourages liquid–liquid phase separation (LLPS) in vitro, fluidizes liquid–liquid phase separated nuclear TDP‐43 reporter constructs in cells, and disrupts RNA splicing activity. Finally, we present the solution NMR structure of a head‐to‐tail NTD dimer comprised of two engineered variants that allow saturation of the native polymerization interface while disrupting higher‐order polymerization. These data provide structural detail for the established mechanistic role of the well‐folded TDP‐43 NTD in splicing and link this function to LLPS. In addition, the fusion‐tag solubilized, recombinant form of TDP‐43 full‐length protein developed here will enable future phase separation and in vitro biochemical assays on TDP‐43 function and interactions that have been hampered in the past by TDP‐43 aggregation.  相似文献   

3.
4.
The mechanism by which mutations in TAR DNA‐binding protein 43 (TDP‐43) cause neurodegeneration remains incompletely understood. In this issue of The EMBO Journal, Fratta et al ( 2018 ) describe how a point mutation in the C‐terminal low complexity domain of TDP‐43 leads to the skipping of otherwise constitutively conserved exons. In vivo, this mutation triggers late‐onset progressive neuromuscular disturbances, as seen in amyotrophic lateral sclerosis (ALS), suggesting that TDP‐43 splicing gain‐of‐function contributes to ALS pathogenesis.  相似文献   

5.
Treatment options for people living with amyotrophic lateral sclerosis (ALS) are limited and ineffective. Recently, dexpramipexole (RPPX) was advanced into human ALS clinical trials. In the current studies, we investigated RPPX in two parallel screening systems: 1) appropriately powered, sibling-matched, gender-balanced survival efficacy screening in high-copy B6-SJL-SOD1G93A/Gur1 mice, and 2) high-content neuronal survival screening in primary rat cortical neurons transfected with wild-type human TDP43 or mutant human TDP43. In both cases, we exposed the test systems to RPPX levels approximating those achieved in human Phase II clinical investigations. In SOD1G93A mice, no effect was observed on neuromotor disease progression or survival. In primary cortical neurons transfected with either mutant or wild-type human TDP43, a marginally significant improvement in a single indicator of neuronal survival was observed, and only at the 10 µM RPPX treatment. These systems reflect both mutant SOD1- and TDP43-mediated forms of neurodegeneration. The systems also reflect both complex non-cell autonomous and neuronal cell autonomous disease mechanisms. The results of these experiments, taken in context with results produced by other molecules tested in both screening systems, do not argue positively for further study of RPPX in ALS.  相似文献   

6.
Mutation of Tar DNA‐binding protein 43 (TDP‐43) is linked to amyotrophic lateral sclerosis. Although astrocytes have important roles in neuron function and survival, their potential contribution to TDP‐43 pathogenesis is unclear. Here, we created novel lines of transgenic rats that express a mutant form of human TDP‐43 (M337V substitution) restricted to astrocytes. Selective expression of mutant TDP‐43 in astrocytes caused a progressive loss of motor neurons and the denervation atrophy of skeletal muscles, resulting in progressive paralysis. The spinal cord of transgenic rats also exhibited a progressive depletion of the astroglial glutamate transporters GLT‐1 and GLAST. Astrocytic expression of mutant TDP‐43 led to activation of astrocytes and microglia, with an induction of the neurotoxic factor Lcn2 in reactive astrocytes that was independent of TDP‐43 expression. These results indicate that mutant TDP‐43 in astrocytes is sufficient to cause non‐cell‐autonomous death of motor neurons. This motor neuron death likely involves deficiency in neuroprotective genes and induction of neurotoxic genes in astrocytes.  相似文献   

7.
Excitotoxicity and disruption of Ca2+ homeostasis have been implicated in amyotrophic lateral sclerosis (ALS) and limiting Ca2+ entry is protective in models of ALS caused by mutation of SOD1. Lomerizine, an antagonist of L‐ and T‐type voltage‐gated calcium channels and transient receptor potential channel 5 transient receptor potential channels, is well tolerated clinically, making it a potential therapeutic candidate. Lomerizine reduced glutamate excitotoxicity in cultured motor neurons by reducing the accumulation of cytoplasmic Ca2+ and protected motor neurons against multiple measures of mutant SOD1 toxicity: Ca2+ overload, impaired mitochondrial trafficking, mitochondrial fragmentation, formation of mutant SOD1 inclusions, and loss of viability. To assess the utility of lomerizine in other forms of ALS, calcium homeostasis was evaluated in culture models of disease because of mutations in the RNA‐binding proteins transactive response DNA‐binding protein 43 (TDP‐43) and Fused in Sarcoma (FUS). Calcium did not play the same role in the toxicity of these mutant proteins as with mutant SOD1 and lomerizine failed to prevent cytoplasmic accumulation of mutant TDP‐43, a hallmark of its pathology. These experiments point to differences in the pathogenic pathways between types of ALS and show the utility of primary culture models in comparing those mechanisms and effectiveness of therapeutic strategies.

  相似文献   


8.
Many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) are linked to the accumulation of specific protein aggregates in affected regions of the nervous system. SOD1, TDP‐43, FUS and optineurin (OPTN) proteins were identified to form intraneuronal inclusions in ALS patients. In addition, mutations in OPTN are associated with both ALS and glaucoma. As the pathological role of OPTN in neuronal degeneration remains unresolved, we created a yeast model to study its potential for aggregation and toxicity. We observed that both wild type and disease‐associated mutants of OPTN form toxic non‐amyloid aggregates in yeast. Similar to reported cell culture and mouse models, the OPTN E50K mutant shows enhanced toxicity in yeast, implying a conserved gain‐of‐function mechanism. Furthermore, OPTN shows a unique aggregation pattern compared to other disease‐related proteins in yeast. OPTN aggregates colocalize only partially with the insoluble protein deposit (IPOD) site markers, but coincide perfectly with the prion seed‐reducing protein Btn2 and several other aggregation‐prone proteins, suggesting that protein aggregates are not limited to a single IPOD site. Importantly, changes in the Btn2p level modify OPTN toxicity and aggregation. This study generates a mechanistic framework for investigating how OPTN may trigger pathological changes in ALS and other OPTN‐linked neurodegenerative disorders.  相似文献   

9.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   

10.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   

11.
TDP‐43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP‐43 function at physiological levels both in vitro and in vivo. Interestingly, we find that mutations within the C‐terminal domain of TDP‐43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP‐43 loss‐ and gain‐of‐function effects. TDP‐43 gain‐of‐function effects in these mice reveal a novel category of splicing events controlled by TDP‐43, referred to as “skiptic” exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain‐of‐function mutation in endogenous Tardbp causes an adult‐onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain‐of‐function and skiptic exons in ALS patient‐derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP‐43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.  相似文献   

12.
13.
14.
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA‐binding protein 43 (TDP‐43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP‐43 is a multi‐functional protein involved in RNA processing and a large number of TDP‐43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP‐43‐linked neurodegeneration remain elusive. In this study, we found that loss of TDP‐43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy–lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP‐43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP‐43‐depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP‐43‐mediated neurodegeneration.  相似文献   

16.
Protein inclusion is a prominent feature of neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) that is characterized by the presence of ubiquitinated TDP‐43 inclusion. Presence of protein inclusions indicates an interruption to protein degradation machinery or the overload of misfolded proteins. In response to the increase in misfolded proteins, cells usually initiate a mechanism called unfolded protein response (UPR) to reduce misfolded proteins in the lumen of endoplasmic reticules. Here, we examined the effects of mutant TDP‐43 on the UPR in transgenic rats that express mutant human TDP‐43 restrictedly in the neurons of the forebrain. Over‐expression of mutant TDP‐43 in rats caused prominent aggregation of ubiquitin and remarkable fragmentation of Golgi complexes prior to neuronal loss. While ubiquitin aggregates and Golgi fragments were accumulating, neurons expressing mutant TDP‐43 failed to up‐regulate chaperones residing in the endoplasmic reticules and failed to initiate the UPR. Prior to ubiquitin aggregation and Golgi fragmentation, neurons were depleted of X‐box‐binding protein 1 (XBP1), a key player of UPR machinery. Although it remains to determine how mutation of TDP‐43 leads to the failure of the UPR, our data demonstrate that failure of the UPR is implicated in TDP‐43 pathogenesis.  相似文献   

17.
Studies have found that mutant, misfolded superoxide dismutase [Cu–Zn] (SOD1) can convert wild type SOD1 (wtSOD1) in a prion-like fashion, and that misfolded wtSOD1 can be propagated by release and uptake of protein aggregates. In developing a prion-like mechanism for this propagation of SOD1 misfolding we have previously shown how enervation of the SOD1 electrostatic loop (ESL), caused by the formation of transient non-obligate SOD1 oligomers, can lead to an experimentally observed gain of interaction (GOI) that results in the formation of SOD1 amyloid-like filaments. It has also been shown that freedom of ESL motion is essential to catalytic function. This work investigates the possibility that restricting ESL mobility might not only compromise superoxide catalytic activity but also serve to promote the peroxidase activity of SOD1, thus implicating the formation of SOD1 oligomers in both protein misfolding and in protein oxidation.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) pathology is linked to the aberrant aggregation of specific proteins, including TDP‐43, FUS, and SOD1, but it is not clear why these aggregation events cause ALS. In this issue of The EMBO Journal, Mateju et al (2017) report a direct link between misfolded proteins accumulating in stress granules and the phase transition of these stress granules from liquid to solid. This discovery provides a model connecting protein aggregation to stress granule dysfunction.  相似文献   

19.
20.
TAR DNA‐binding protein 43 (TDP‐43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the physiological roles of TDP‐43 in the complex translational regulation mechanisms, we exposed cultured cells to oxidative stress induced by sodium arsenite (ARS) for different periods of time, leading to non‐lethal or sublethal injury. Polysome profile analysis revealed that ARS‐induced stress caused the association of TDP‐43 with stalled ribosomes via binding to mRNA, which was not found under the steady‐state condition. When the cells were exposed to short‐term/non‐lethal stress, TDP‐43 associating with ribosomes localized to stress granules (SGs); this association was transient because it was immediately dissolved by the removal of the stress. In contrast, when the cells were exposed to long‐term/sublethal stress, TDP‐43 was excluded from SGs and shifted to the heavy fractions independent of any binding to mRNA. In these severely stressed cells, biochemical alterations of TDP‐43, such as increased insolubility and disulfide bond formation, were irreversible. TDP‐43 was finally phosphorylated via the ARS‐induced c‐jun N‐terminal kinase pathway. In TDP‐43‐silenced cells, stalled mRNA and poly (A)+ RNA stability was disturbed and cytotoxicity increased under sublethal stress. Thus, TDP‐43 associates with stalled ribosomes and contributes to cell survival during cellular stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号