首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Umbilical cord blood (UCB) is of great interest as a source of stem cells for use in cellular therapies. The immunomodulatory effect of mesenchymal stem cells (MSCs) originating from bone marrow, adipose tissue and amniotic membrane has previously been reported. In this study, MSCs were isolated from UCB with the aim of evaluating their immunomodulatory effects on proliferation of PB lymphocytes by two different techniques; namely, 5‐bromo‐2‐deoxyuridine ELISA and a carboxy fluorescein diacetate succinimidyl ester flow cytometric technique. MSCs were isolated from UCB, propagated until Passage four, and then characterized for cell surface markers by flow cytometry and ability to differentiate towards osteocytes and adipocytes. Immunosuppressive effects on PB lymphocytes were examined by co‐culturing mitomycin C‐treated UCB MSCs with mitogen‐stimulated lymphocytes for 72 hr. Thereafter, proliferation of lymphocytes was detected by CFSE flow cytometry and colorimetric ELISA. The titers of cytokines in cell culture supernatant were also assayed to clarify possible mechanisms of immunomodulation. UCB MSCs suppressed mitogen‐stimulated lymphocyte proliferation, which occurs via both cell‐cell contact and cytokine secretion. Titers of transforming growth factor beta and IL 10 increased, whereas that of IFN‐γ decreased in the supernatants of co‐cultures. Thus, UCB MSCs suppress the proliferation of mitogen‐stimulated lymphocytes. However further in vivo studies are required to fully evaluate the immunomodulatory effects of UCB MSCs.  相似文献   

3.
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.  相似文献   

4.
Recent studies have demonstrated that mesenchymal stem cells could differentiate into germ cells under appropriate conditions. We sought to determine whether human umbilical cord Wharton's jelly‐derived mesenchymal stem cells (HUMSCs) could form germ cells in vitro. HUMSCs were induced to differentiate into germ cells in all‐trans retinoic acid, testosterone and testicular‐cell‐conditioned medium prepared from newborn male mouse testes. HUMSCs formed “tadpole‐like” cells after induction with different reagents and showed both mRNA and protein expression of germ‐cell‐specific markers Oct4 (POUF5), Ckit, CD49f (α6), Stella (DDPA3), and Vasa (DDX4). Our results may provide a new route for reproductive therapy involving HUMSCs and a novel in vitro model to investigate the molecular mechanisms that regulate the development of the mammalian germ lineage. J. Cell. Biochem. 109: 747–754, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
Ovarian injury because of chemotherapy can decrease the levels of sexual hormones and potentia generandi of patients, thereby greatly reducing quality of life. The goal of this study was to investigate which transplantation method for human umbilical cord mesenchymal stem cells (HUMSCs) can recover ovarian function that has been damaged by chemotherapy. A rat model of ovarian injury was established using an intraperitoneal injection of cyclophosphamide. Membrane‐labelled HUMSCs were subsequently injected directly into ovary tissue or tail vein. The distribution of fluorescently labelled HUMSCs, estrous cycle, sexual hormone levels, and potentia generandi of treated and control rats were then examined. HUMSCs injected into the ovary only distributed to the ovary and uterus, while HUMSCs injected via tail vein were detected in the ovary, uterus, kidney, liver and lung. The estrous cycle, levels of sex hormones and potentia generandi of the treated rats were also recovered to a certain degree. Moreover, in some transplanted rats, fertility was restored and their offspring developed normally. While ovary injection could recover ovarian function faster, both methods produced similar results in the later stages of observation. Therefore, our results suggest that transplantation of HUMSCs by tail vein injection represents a minimally invasive and effective treatment method for ovarian injury.  相似文献   

8.
Human umbilical cord mesenchymal stem cells (hUC‐MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle. The purpose of our study was to prospectively evaluate the influence of SPIO on hUC‐MSCs and the feasibility of tracking for hUC‐MSCs by noninvasive imaging. In vitro studies demonstrated that magnetic resonance imaging (MRI) can efficiently detect low numbers of SPIO‐labeled hUC‐MSCs and that the intensity of the signal was proportional to the number of labeled cells. After transplantation into focal areas in adult rat spinal cord transplanted SPIO‐labeled hUC‐MSCs produced a hypointense signal using T2‐weighted MRI in rats that persisted for up to 2 weeks. This study demonstrated the feasibility of noninvasive imaging of transplanted hUC‐MSCs. J. Cell. Biochem. 108: 529–535, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
脊髓损伤(SCI)由于复杂病理生理和神经修复再生困难,至今仍旧是难以攻克的医学难题,而干细胞因其神经再生和神经保护特性被认为是治疗SCI最有希望的方法。其中人脐带间充质干细胞(HUC-MSCs)近年培养分化方法不断改进、神经修复机制初步阐明,联合移植等综合治疗方案也不断实践,使HUC-MSCs移植治疗效果提高。另外关于HUC-MSCs治疗SCI的临床试验逐渐开展,术后患者神经功能恢复改善且无严重并发症出现,表明干细胞移植应用于人体是安全有效的。本文就HUC-MSCs治疗SCI的研究状况及进展进行综述。  相似文献   

10.
Mesenchymal stem cells (MSCs) have been widely used in allogeneic stem cell transplantation. We compared im- munologic and hematopoietic characteristics of MSCs derived from whole human umbilical cord (UC), as well as from different sections of UCs, including the amniotic membrane (AM), Wharton's jelly (WJ), and umbilical vessel (UV). Cell phenotypes were examined by flow cytometry. Lymphocyte transformation test and mixed lymphocyte reaction were performed to evaluate the immuno-modulatory activity of MSCs derived from UCs. The mRNA expression of cytokines was detected by real- time polymerase chain reaction. Hematopoietic function was studied by co-culturing MSCs with CD34+ cells iso- lated from cord blood. Our results showed that MSCs separated from these four different sections including UC, W J, UV, and AM had similar biological characteristics. All of the MSCs had multi-lineage differentiation ability and were able to differentiate into osteoblasts, adipocytes, and chondrocytes. The MSCs also inhibited the proliferation of allogeneic T cells in a dose-dependent manner. The relative mRNA expression of cytokines was examined, and the results showed that UCMSCs had higher interleukin-6 (IL6), ILll, stem cell factor, and FLT3 expression than MSCs derived from specific sections of UCs. CD34+ cells had high propagation efficiencies when co-cultured with MSCs derived from different sections of UCs, among which UCMSCs are the most efficient feeding layer. Our study demonstrated that MSCs could be isolated from whole UC or specific sections of UC with similar immuno- modulation and hematopoiesis supporting characteristics.  相似文献   

11.
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease.  相似文献   

12.
成体多能干细胞,如来自骨髓和脂肪组织的间充质干细胞等具有多向分化的潜能。虽然自体干细胞移植已经发展成为器官移植的有效代替疗法之一,但是由于移植位点细胞的流失和分化条件的限制等问题使得这种疗法的效率大大降低。本研究目的是将由脂肪干细胞分化而来的类肝细胞制备成具有稳定细胞性状的可移植的肝细胞片。首先在体外分离扩增脂肪干细胞,并通过控制严格地分化条件获得类肝细胞。然后将此细胞接种到聚N-异丙基丙烯酰胺(PNIPAAm)结合的细胞培养皿表面,通过调节培养温度到20oC,使细胞成片脱离培养皿形成细胞片。对细胞片进行了常规HE染色和免疫组化观察,结果显示:这类细胞片中平均含有2~3层细胞,并且保持了细胞外基质的完整。同传统的胰酶消化收集移植用细胞相比,细胞片方法极大地减少了对移植用细胞的细胞膜和细胞外基质的损伤,这将大大促进细胞片和原位组织的相互作用,增加细胞利用效率,从而有望提高治疗效果。  相似文献   

13.
Li CD  Zhang WY  Li HL  Jiang XX  Zhang Y  Tang PH  Mao N 《Cell research》2005,15(7):539-547
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.  相似文献   

14.
目的寻找可以维持人胚胎干细胞未分化生长的人源性细胞作为饲养层细胞,从而解决使用鼠源性细胞作为饲养层带来的安全问题。方法尝试以人脐带间充质干细胞作为饲养层细胞来培养人胚胎干细胞,检验其是否可以维持人胚胎干细胞的未分化生长状态。用胶原酶消化法分离人脐带间充质干细胞,光镜下观察细胞形态;流式细胞仪检测其表面标志;诱导人脐带间充质干细胞向成骨细胞和脂肪细胞进行分化。将人胚胎干细胞系H1接种于丝裂霉素C灭活后的人脐带间充质干细胞上,每隔5d进行一次传代。培养20代后,对人胚胎干细胞特性进行相关检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达、分化能力。结果从人脐带中分离出的间充质干细胞为梭形,呈平行排列生长或漩涡状生长;细胞高表达CD44、CD29、CD73、CD105、CD90、CD86、CD147、CD117,不表达CD14、CD38、CD133、CD34、CD45、HLA-DR;具有分化成脂肪细胞和成骨细胞的潜能。人胚胎干细胞在人脐带间充质干细胞饲养层上培养20代后,继续保持人胚胎干细胞的典型形态,碱性磷酸酶染色为阳性,免疫荧光染色显示OCT4、Nanog、SSEA4、TRA-1-81、TRA-1-60的表达为阳性,SSEA1表达为阴性,体外悬浮培养可以形成拟胚体。结论人脐带间充质干细胞可以作为人胚胎干细胞的饲养层细胞,支持其生长,并维持其未分化生长状态。  相似文献   

15.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   

16.
17.
There is increasing evidence that human mesenchymal stem cells (hMSCs) can be a valuable, transplantable source of hepatocytes. Most of the hMSCs preparations used in these studies were likely heterogeneous cell populations, isolated by adherence to plastic surfaces or by density gradient centrifugation. Therefore, the participation of other unknown trace cell populations cannot be rigorously discounted. Here we report the isolation and establishment of a cloned human MSC line (chMSC) from human bone marrow primary culture, through which we confirmed the hepatic differentiation capability of authentic hMSCs. chMSCs expressed markers of mesenchymal cells, but not markers of hematopoietic stem cells. In vitro, chMSCs can differentiate into either mesenchymal cells or cells exhibiting hepatocyte‐like phenotypes. When transplanted intrasplentically into carbon tetrachloride‐injured livers of SCID mice, EGFP‐tagged chMSCs engrafted into the host liver parenchyma, exhibited typical hepatocyte morphology, form a three‐dimensional architecture, and differentiate into hepatocyte‐like cells expressing human albumin and α‐1‐anti‐trypsin. By confocal microscopy, ultrafine intercellular nanotubular structures were visible between adjacent transplanted and host hepatocytes. We postulate that these structures may assist in the phenotype conversion of chMSCs, possibly by exchange of cytoplasmic components between native hepatocytes and transplanted cells. Thus, a clonal pure population of hMSCs, which can be expanded in culture, may have potential as a cellular source for substitution damaged cells in hepatic injury. J. Cell. Biochem. 108: 693–704, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20–30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB‐MSC‐like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 × 106 cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL‐3, and 5 ng/mL Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Moreover, the UCB‐MSC‐like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens‐DR (HLA‐DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB‐MSCs by adding suitable cytokines into the culture system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号