首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator‐activated receptor (Ppar) γ coactivator‐1α (Pgc‐1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte‐selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc‐1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.  相似文献   

2.
Brown adipose tissue (BAT), a major site for mammalian non‐shivering thermogenesis, could be a target for prevention and treatment of human obesity. Transient receptor potential vanilloid 2 (TRPV2), a Ca2+‐permeable non‐selective cation channel, plays vital roles in the regulation of various cellular functions. Here, we show that TRPV2 is expressed in brown adipocytes and that mRNA levels of thermogenic genes are reduced in both cultured brown adipocytes and BAT from TRPV2 knockout (TRPV2KO) mice. The induction of thermogenic genes in response to β‐adrenergic receptor stimulation is also decreased in TRPV2KO brown adipocytes and suppressed by reduced intracellular Ca2+ concentrations in wild‐type brown adipocytes. In addition, TRPV2KO mice have more white adipose tissue and larger brown adipocytes and show cold intolerance, and lower BAT temperature increases in response to β‐adrenergic receptor stimulation. Furthermore, TRPV2KO mice have increased body weight and fat upon high‐fat‐diet treatment. Based on these findings, we conclude that TRPV2 has a role in BAT thermogenesis and could be a target for human obesity therapy.  相似文献   

3.

Background

Brown adipocytes generate heat through the expression of mitochondrial Ucp1. Compared with the information on the regulatory differentiation of white preadipocytes, the factors affecting brown adipogenesis are not as well understood. The present study examined the roles of the Tgf-β family members Bmp, Tgf-β and Activin during differentiation of HB2 brown preadipocytes.

Methods

Endogenous Bmp activity and effects of exogenous Tgf-β family members were examined. Role of Srebp1c in brown adipogenesis was further explored.

Results

Although Bmp7 has been suggested to be a potent stimulator of brown adipogenesis, it affected neither the expression of brown adipocyte-selective genes nor Ucp1 induction in response to a β adrenergic receptor agonist. Unlike in 3T3-L1 white preadipocytes, endogenous Bmp activity was not required for brown adipogenesis; treatment with inhibitors of the Bmp pathway did not affect differentiation of preadipocytes. Administration of Tgf-β1 or Activin A efficiently decreased the insulin-induced expression of brown adipocyte-selective genes. Tgf-β1 and Activin A decreased the expression of Pparγ2 and C/ebpα, suggesting the inhibition of adipogenesis. The Tgf-β- and Activin-induced inhibition of brown adipogenesis was mediated by the repression of Srebp1c expression; Tgf-β1 and Activin A blocked Srebp1c gene induction in response to the differentiation induction, and knock-down of Srebp1 expression inhibited brown adipogenesis.

Conclusion

Endogenous Bmp is dispensable for brown adipogenesis, and Srebp1c is indispensable, which is negatively regulated by Tgf-β and Activin.

General significance

Control of activity of the Tgf-β family is potentially useful for maintenance of energy homeostasis through manipulation of brown adipogenesis.  相似文献   

4.
5.
6.
Brown adipocytes are rich in mitochondria and linked to the body's blood fat levels and obesity. MiR-92a is negatively correlated with the activity of brown adipocytes. This study aimed to explore the mechanism of miR-92a on brown adipocytes. The expression of miR-92a in C2C12 cell was detected by a quantitative real-time-polymerase chain reaction (qRT-PCR). C2C12 cells were induced to brown adipocytes. The direct target gene of miR-92a was determined using the dual-luciferase reporter assay. Brown adipocytes were treated with isoprenaline (Iso) and transfected by miR-92a inhibitor and siSMAD7. The expression of heat-producing genes and adipose differentiation genes related to brown adipocytes were detected by qRT-PCR and Western blot analysis. The expression of SMAD7, p-SMAD2, and p-SMAD3 were detected using Western blot analysis. The mitochondrial content was measured by mitotracker fluorescent staining. MiR-92a inhibitor significantly decreased the expression of miR-92a in C2C12 cells. MiR-92a inhibitor could upregulate the expression of Ucp1, Cox7a1, Elovl3, Ppargc1α, PPARγ, and FABP4, and its effect on Ucp1 was increased after the treatment of isoprenaline. Moreover, miR-92a inhibitor increased mitochondrial content, oxygen consumption rate (OCR) and the expression of SMAD7 and suppressed the expressions of p-SMAD2 and p-SMAD3, whereas miR-92a directly targeted SMAD7 to exert its inhibitory effects. SiSMAD7 reversed the effects of the inhibitor on heat-producing genes, mitochondrial content, OCR and the expressions of SMAD7, p-SMAD2, and p-SMAD3 in brown adipocytes. Blocking miR-92a might promote brown adipocytes differentiation, mitochondrial oxidative respiration, and thermogenesis by targeting SMAD7 to inhibit the expressions of p-SMAD2 and p-SMAD3.  相似文献   

7.
Brown adipose tissue (BAT) is the specific site for metabolic heat production in mammals. To establish a novel immortal brown adipocyte cell line, the stromal-vascular fraction containing preadipocytes was obtained from interscapular BAT of mice deficient of a tumor-suppressor gene p53. The p53-deficient cells, tentatively named as HB2 cells, could be cultured in vitro after repeated passages and differentiated into adipocytes in the presence of insulin, T3 and/or troglitazone, expressing some adipocyte-specific genes and accumulating intracellular lipid droplets. The mRNA level of uncoupling protein 1 (UCP1), a mitochondrial protein specifically present in brown adipocytes, was undetectable in HB2 preadipocytes, but increased after adipose differentiation. In HB2 adipocytes, UCP1 mRNA expression was markedly activated after stimulation of the beta-adrenergic receptor pathway. The mRNA of UCP2 and UCP3, recently cloned isoforms of UCP1, were also detected in HB2 adipocytes, but their levels were not influenced by adrenergic stimulation. Thus HB2 cells seem useful for in vitro studies of BAT and UCP functions.  相似文献   

8.
9.
Obesity is caused by a long-term imbalance between energy intake and consumption and is regulated by multiple signals. This study investigated the effect of signaling scaffolding protein Gab2 on obesity and its relevant regulation mechanism. Gab2 knockout (KO) and wild-type (WT) mice were fed with a standard diet (SD) or high-fat diet (HFD) for 12 weeks. The results showed that the a high-fat diet-induced Gab2 expression in adipose tissues, but deletion of Gab2 attenuated weight gain and improved glucose tolerance in mice fed with a high-fat diet. White adipose tissue and systemic inflammations were reduced in HFD-fed Gab2 deficiency mice. Gab2 deficiency increased the expression of Ucp1 and other thermogenic genes in brown adipose tissue. Furthermore, the regulation of Gab2 on the mature differentiation and function of adipocytes was investigated in vitro using primary or immortalized brown preadipocytes. The expression of brown fat-selective genes was found to be elevated in differentiated adipocytes without Gab2. The mechanism of Gab2 regulating Ucp1 expression in brown adipocytes involved with its downstream PI3K (p85)-Akt-FoxO1 signaling pathway. Our research suggests that deletion of Gab2 suppresses diet-induced obesity by multiple pathways and Gab2 may be a novel therapeutic target for the treatment of obesity and associated complications.Subject terms: Fat metabolism, Obesity  相似文献   

10.
11.
12.
13.
Stimulation of brown adipocytes by their sympathetic innervation plays a major role in body energy homeostasis by regulating the energy- wasting activity of the tissue. The norepinephrine released by sympathetic activity acts on adrenergic receptors to activate a variety of metabolic and membrane responses. Since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. We find that micromolar concentrations of extracellular ATP initiates profound changes in the membrane trafficking of brown adipocytes. ATP elicited substantial increases in total cell membrane capacitance, averaging approximately 30% over basal levels and occurring on a time scale of seconds to minutes. The membrane capacitance increase showed an agonist sensitivity of 2-methylthio-ATP > or = ATP > ADP > > adenosine, consistent with mediation by a P2r type purinergic receptor. Membrane capacitance increases were not seen when cytosolic calcium was increased by adrenergic stimulation, and capacitance responses to ATP were similar in the presence and absence of extracellular calcium. These results indicate that increases in cytosolic calcium alone do not mediate the membrane response to ATP. Photometric assessment of surface-accessible membrane using the dye FM1- 43 showed that ATP caused an approximate doubling of the amount of membrane actively trafficking with the cell surface. The discrepancy in the magnitudes of the capacitance and fluorescence changes suggests that ATP both activates exocytosis and alters other aspects of membrane handling. These findings suggest that secretion, mobilization of membrane transporters, and/or surface membrane expression of receptors may be regulated in brown adipocytes by P2r purinergic receptor activity.  相似文献   

14.
We have examined whether a qualitative switch occurs in the response of the ribonucleotide reductase (RNR) genes to the effect of the physiological cAMP-elevating agent norepinephrine (NE) during the development of brown adipocytes. Basal expression of the genes for both RNR subunits, R1 and R2, was high in proliferating cells, but was markedly down-regulated in parallel with adipocyte differentiation. NE stimulation, which promotes DNA synthesis and proliferation of brown preadipocytes, resulted in an increased expression of the R2 gene in proliferating cells (1.6-fold), but was without effect on R1 expression. In contrast, NE stimulation of confluent differentiating brown adipocytes reduced both R1 and R2 expression. The NE stimulation of R2 expression in preadipocytes was mimicked by forskolin and abolished by H89, demonstrating mediation via cAMP and protein kinase A (PKA). Also, inhibitors of Src and of Erk1/2 kinases markedly reduced NE-stimulated R2 expression. We conclude that adrenergic stimulation of brown adipocytes by NE specifically elevates expression of the RNR subunit R2 gene in the proliferative stage of brown adipocyte development, the mediating pathway being a cAMP/PKA cascade further involving Src and the MAP kinase Erk1/2. These results suggest that adrenergic stimulation of brown adipocyte proliferation may act at the level of gene expression of the limiting subunit for RNR activity, R2, and demonstrate a qualitative switch in the response of the R2 gene to cAMP-elevating agents as a consequence of the switch from proliferating to differentiating cell status.  相似文献   

15.
16.
17.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

18.
Insulin acutely stimulated glucose uptake in rat primary brown adipocytes in a PI3-kinase-dependent but p70S6-kinase-independent manner. Since Akt represents an intermediate step between these kinases, this study investigated the contribution of Akt to insulin-induced glucose uptake by the use of a chemical compound, ML-9, as well as by transfection with a dominant-negative form of Akt (DeltaAkt). Pretreatment with ML-9 for 10 min completely inhibited insulin stimulation of (1) Akt kinase activity, (2) Akt phosphorylation on the regulatory residue Ser473 but not on Thr308, and (3) mobility shift in Akt1 and Akt2. However, ML-9 did not affect insulin-stimulated PI3-kinase nor PKCzeta activities. In consequence, ML-9 precluded insulin stimulation of glucose uptake and GLUT4 translocation to plasma membrane (determined by Western blot), without any effect on the basal glucose uptake. Moreover, DeltaAkt impaired insulin stimulation of glucose uptake and GFP-tagged GLUT4 translocation to plasma membrane in transiently transfected immortalised brown adipocytes and HeLa cells, respectively. Furthermore, ML-9 treatment for 6 h down-regulated insulin-induced GLUT4 mRNA accumulation, without affecting GLUT1 expression, in a similar fashion as LY294002. Indeed, co-transfection of brown adipocytes with DeltaAkt precluded the transactivation of GLUT4-CAT promoter by insulin in a similar fashion as a dominant-negative form of PI3-kinase. Our results indicate that activation of Akt may be an essential requirement for insulin regulation of glucose uptake and GLUT4 gene expression in brown adipocytes.  相似文献   

19.

Objective:

Estrogen‐related receptors (ERRs) are important regulators of energy metabolism. Here we investigated the hypothesis that ERRγ impacts on differentiation and function of brown adipocytes.

Design and Methods:

We characterize the expression of ERRγ in adipose tissues and cell models and investigate the effects of modulating ERR? activity on UCP1 gene expression and metabolic features of brown and white adipocytes.

Results:

ERRγ was preferentially expressed in brown compared to white fat depots, and ERRγ was induced during cold‐induced browning of subcutaneous white adipose tissue and brown adipogenesis. Overexpression of ERRγ positively regulated uncoupling protein 1 (UCP1) expression levels during brown adipogenesis. This ERRγ‐induced augmentation of UCP1 expression was independent of the presence of peroxisome proliferator‐activated receptor coactivator‐1 (PGC‐1α) but was associated with increased rates of fatty acid oxidation in adrenergically stimulated cells. ERR? did not influence mitochondrial biogenesis, and its reduced expression in white adipocytes could not explain their low expression level of UCP1.

Conclusions:

Through its augmenting effect on expression of UCP1, ERRγ may physiologically be involved in increasing the potential for energy expenditure in brown adipocytes, a function that is becoming of therapeutic interest.
  相似文献   

20.
Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a room temperature of 23 °C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5 °C) or treated with β3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23 °C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5 °C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号