首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
自噬(Autophagy)是真核生物细胞中一类高度保守的、依赖于溶酶体或液泡途径对胞质蛋白和细胞器进行降解的生物学过程。细胞自噬除维持细胞稳态外,在细胞响应各种外界胁迫中也发挥重要作用。近年来,陆续发现浮游植物能够通过细胞自噬应答众多环境胁迫,并在浮游植物细胞中鉴定出了类似于哺乳动物细胞中的核心自噬功能单位。自噬作为一种独特的程序性细胞死亡(PCD)形式,对浮游植物遭受胁迫后的个体存活及种群延续具有至关重要的作用。因此,细胞自噬也将成为浮游植物研究领域的一个新的着力点。主要综述了浮游植物细胞中自噬的保守性、诱导因素、调控机制、自噬与凋亡的交互作用以及浮游植物自噬研究方法等研究进展。  相似文献   

2.
Nucleomorphs are the vestigial nuclear genomes of eukaryotic algal cells now existing as endosymbionts within a host cell. Molecular investigation of the endosymbiont genomes has allowed important insights into the process of eukaryote/eukaryote cell endosymbiosis and has also disclosed a plethora of interesting genetic phenomena. Although nucleomorph genomes retain classic eukaryotic traits such as linear chromosomes, telomeres, and introns, they are highly reduced and modified. Nucleomorph chromosomes are extremely small and encode compacted genes which are disrupted by the tiniest spliceosomal introns found in any eukaryote. Mechanisms of gene expression within nucleomorphs have apparently accommodated increasingly parsimonious DNA usage by permitting genes to become co-transcribed or, in select cases, to overlap.  相似文献   

3.
The Cytoskeleton of trypanosomes   总被引:1,自引:0,他引:1  
From the concept of cells as mere bags full of enzymes, cell biology has come a long way towards understanding the highly complex structural organization of eukaryotic cells. The cytoskeleton, ie. the complex of fibrous elements that are crucial for cell shape, motility and the structural organization of cytoplasm and cell membranes, is now recognized as vital for supporting many critical functions in eukaryotic cells. Surprisingly, this subject, which has provided scores of cell biologists with excitement and fascination, has been largely overlooked with respect to parasitic protozoa. A notable change of perception has taken place over the past few years as the cytoskeleton of parasitic protozoa has been increasingly recognized as a potential target for antiparasitic intervention. The following article by Thomas Seebeck, Andrew Hemphill and Durward Lawson highlights some recent developments in the analysis of what is presently the best-studied parasite cytoskeleton, that of the trypanosome.  相似文献   

4.
Proteasomes are ring- or cylinder-shaped particles that have a sedimentation coefficient of 20S and are composed of a characteristic set of small polypeptides. These particles have a latent multicatalytic proteinase activity. Recently, proteasomes were found to combine reversibly with multiple protein components to form 26S proteolytic complexes that catalyze ATP-dependent, selective breakdown of proteins ligated with ubiquitin. This suggests that the 26S complexes are a new type of ATP-requiring protease in eukaryotic cells. We have studied the structures of various eukaryotic proteasomes at the molecular level by physicochemical and recombinant DNA techniques and have proposed that the gross structures of proteasomes, such as their size and shape, have been highly conserved during evolution. Proteasome subunits appear to be encoded by a family of homologous genes named the "proteasome gene family," which may have evolved from a common ancestral gene. Evidence obtained by genetic analyses in yeast and studies on the levels of proteasome expression in various eukaryotic cells indicates that proteasomes have essential roles in the cell. In this review, we summarize available information on the protein and gene structures of proteasomes and discuss the biological functions of proteasomes.  相似文献   

5.
6.
7.
Activation of cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Although cyclin gene expression has been extensively studied in plants, not much is known at the level of the protein stability and function. Here, we demonstrated by using the highly synchronizable tobacco BY2 cell culture, that endogenous cyclin B1 protein undergoes cell cycle-dependent proteolysis and is stabilized when the spindle checkpoint has been activated. Furthermore, we established transgenic tobacco BY2 cell cultures expressing under the control of an inducible promoter, cyclin B1 protein as well as its non-degradable form as fusion proteins with GFP and found that the ectopic expression of these proteins did not dramatically disturb the cell cycle progression. These results indicate that, to a certain extent, cell cycle exit is possible without cyclin B1 proteolysis.  相似文献   

8.
Regulated cell death, or apoptosis, has evolved to fulfil a myriad of functions amongst multicellular organisms. It is now apparent that programmed cell death occurs in unicellular organisms such as yeast. In yeast, as in higher eukaryotes, the actin cytoskeleton is an essential component of a number of cellular activities, and many of the regulatory proteins involved are highly conserved. Recent evidence from diverse eukaryotic systems suggests that the actin cytoskeleton has a role in regulating apoptosis via interactions with the mitochondria. This interaction also appears to have a significant impact on the management of oxidative stress and so cellular ageing. In this mini-review we summarise some of the work, which suggests that actin is a key regulator of apoptosis and ageing in eukaryotic cells.  相似文献   

9.
10.
Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar functional characteristics, assembling into filamentous structures in a nucleotide-dependent fashion. Recent advances in fluorescence microscopic imaging have revealed that FtsZ and MreB form highly dynamic helical structures that encircle the cells along the inside of the cell membrane. With the discovery of crescentin, a cell-shape-determining protein that resembles eukaryotic intermediate filament proteins, the third major cytoskeletal element has now been identified in bacteria as well.  相似文献   

11.
Legionella pneumophila infects alveolar macrophages and protozoa through establishment of an intracellular replication niche. This process is mediated by bacterial effectors translocated into the host cell via the Icm/Dot type IV secretion system. Most of the effectors identified so far are unique to L. pneumophila ; however, some of the effectors are homologous to eukaryotic proteins. We performed a distribution analysis of many known L. pneumophila effectors and found that several of them, mostly eukaryotic homologous proteins, are present in different Legionella species. In-depth analysis of LegS2, a L. pneumophila homologue of the highly conserved eukaryotic enzyme sphingosine-1-phosphate lyase (SPL), revealed that it was most likely acquired from a protozoan organism early during Legionella evolution. The LegS2 protein was found to translocate into host cells using a C-terminal translocation domain absent in its eukaryotic homologues. LegS2 was found to complement the sphingosine-sensitive phenotype of a Saccharomyces serevisia SPL-null mutant and this complementation depended on evolutionary conserved residues in the LegS2 catalytic domain. Interestingly, unlike the eukaryotic SPL that localizes to the endoplasmic reticulum, LegS2 was found to be targeted mainly to host cell mitochondria. Collectively, our results demonstrate the remarkable adaptations of a eukaryotic protein to the L. pneumophila pathogenesis system.  相似文献   

12.
SNAREs are important components of the vesicle trafficking machinery in eukaryotic cells. In plants, SNAREs have been found to play a variety of roles in the development and physiology of the whole organism. Here, we describe the identification and characterization of a novel plant-specific SNARE, NPSN11, a member of a closely related small gene family in Arabidopsis. NSPN11 is highly expressed in actively dividing cells. In a subcellular fractionation experiment, NSPN11 cofractionates with the cytokinesis-specific syntaxin, KNOLLE, which is required for the formation of the cell plate. By immunofluorescence microscopy, NSPN11 was localized to the cell plate in dividing cells. Consistent with the localization studies, NSPN11 was found to interact with KNOLLE. Our results suggest that NPSN11 is another component of the membrane trafficking and fusion machinery involved in cell plate formation.  相似文献   

13.
14.
Essential roles of 70kDa heat inducible proteins   总被引:10,自引:0,他引:10  
The 70 kDa heat inducible proteins (hsp70s) are a highly conserved family of proteins found in every organism examined. Some hsp70 proteins are essential for cell viability. Recent work has revealed that these proteins are involved in the movement of proteins into and through various compartments of the eukaryotic cell.  相似文献   

15.
In this work, we have devised an intracellular immunization strategy for the expression in high amounts of ATF-saporin, a targeted chimeric toxin constituted by the ATF receptor binding domain of human urokinase and the plant ribosome-inactivating protein saporin, which has been shown to be highly cytotoxic to target cells. This strategy may allow the production of highly toxic secretory proteins in eukaryotic cells, avoiding cell suicide caused by autointoxication. The procedure consists of equipping host cells with cytosolic neutralizing antibodies directed toward the toxic domain of the heterologous polypeptide. We show that this intracellular immunization is essential for the synthesis of correctly folded, biologically active ATF-SAP in the high amounts needed to investigate its in vivo anti-metastatic potential. Such a strategy should be generally useful for the production of toxic molecules of therapeutic value whose folding and maturation require transit through the eukaryotic secretory pathway. Fabbrini, M. S., Carpani, D., Soria, M. R., Ceriotti, A. Cytosolic immunization allows the expression of preATF-saporin chimeric toxin in eukaryotic cells.  相似文献   

16.
Although biochemical properties of 2-Cys peroxiredoxins (Prxs) have been extensively studied, their real physiological functions in higher eukaryotic cells remain obscure and certainly warrant further study. Here we demonstrated that human (h) PrxII, a cytosolic isotype of human 2-Cys Prx, has dual functions as a peroxidase and a molecular chaperone, and that these different functions are closely associated with its adoption of distinct protein structures. Upon exposure to oxidative stress, hPrxII assumes a high molecular weight complex structure that has a highly efficient chaperone function. However, the subsequent removal of stressors induces the dissociation of this protein structure into low molecular weight proteins and triggers a chaperone-to-peroxidase functional switch. The formation of a high molecular weight hPrxII complex depends on the hyperoxidation of its N-terminal peroxidatic Cys residue as well as on its C-terminal domain, which contains a "YF motif" that is exclusively found in eukaryotic 2-Cys Prxs. A C-terminally truncated hPrxII exists as low and oligomeric protein species and does not respond to oxidative stress. Moreover, this C-terminal deletion of hPrxII converted it from an oxidation-sensitive to a hyperoxidation-resistant form of peroxidase. When functioning as a chaperone, hPrxII protects HeLa cells from H(2)O(2)-induced cell death, as measured by a terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling assay and fluorescence-activated cell sorting analysis.  相似文献   

17.
High level transient gene expression in lymphoid cells has always been challenging because of the difficulty to efficiently transfect such cells. This has precluded any attempt to clone cDNA encoding proteins by means of their specific biological function in lymphoid cells. We have developed a very efficient transient eukaryotic expression system analogous to the well-known expression system in COS cells. Firefly luciferase and human CD2 genes were used as reporter genes and cloned into the eukaryotic shuttle vector pCDM8 which contains the strong cytomegalovirus promoter and the SV40 origin of replication for autonomous plasmid replication in permissive host cells that express the large SV40 T Antigen. Co-transfection of the reporter plasmids together with an SV40 T Ag expressing plasmid resulted in the several fold amplification of either the Luc activity or the cell surface expression of the CD2 marker in a transient assay. The level of amplification was dependent on the strength of the promoter used to drive the SV40 T Ag expression and was correlated with the extent of autonomous replication of the reporter plasmid in transfected cells. This highly efficient transient gene expression by SV40 T Ag boost was suitable to several human cell lines, making this system of general interest for expression cloning strategies or other gene transfer application that need high level expression.  相似文献   

18.
Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria.  相似文献   

19.
A review of mitosis in the fission yeast Schizosaccharomyces pombe   总被引:2,自引:0,他引:2  
Mitosis and cell division are the final events of the cell cycle, resulting in the precise segregation of chromosomes into two daughter cells. A highly controlled and accurate segregation of the chromosomes is required to ensure that each daughter cell receives a complete genome and remains viable. The fission yeast, Schizosaccharomyces pombe, is a unicellular eukaryotic organism which is particularly convenient for investigating these problems. It is very amenable to genetic analysis and its predominantly haploid life cycle has allowed the isolation of recessive temperature-sensitive mutants unable to complete the cell cycle. Classical genetic analysis of these mutants has been used to identify over 40 gene functions that are required for cell cycle progress in S. pombe. Many of these genes have now been cloned and sequenced and in some cases the encoded gene product has been identified. This approach, coupling classical and molecular genetics, allows identification of the molecules important in the mitotic processes and provides a means for establishing what functional roles they may play.  相似文献   

20.
H T He  J Barbet  J C Chaix    C Goridis 《The EMBO journal》1986,5(10):2489-2494
The rodent neural cell adhesion molecule (NCAM) consists of three glycoproteins with Mr of 180,000, 140,000 and 120,000. The Mr 120,000 protein (NCAM-120) has been shown to exist in membrane-bound and soluble forms but the nature of its membrane association and release has remained obscure. We show here that phosphatidylinositol-specific phospholipase C (PI-PLC), but not a phospholipase C of different specificity, releases a substantial proportion of NCAM-120 from brain membranes and solubilizes almost quantitatively NCAM-120 present at the surface of C6 astroglial cells. The PI-PLC effect was highly selective since only one other protein species was detectably released from C6 cells. These results suggest that NCAM-120 is held in the membrane by covalently bound phosphatidylinositol or a closely related lipid in a way similar to several other surface proteins from eukaryotic cells. The presence of NCAM in a form which can be released from the cell surface by a highly selective mechanism raises additional possibilities for modulation and control of cell--cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号