首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Proline's glycogenic action is unlike that of other amino acids in that it produces effects beyond those explainable by a simple increase in osmolarity (Baquet, A., Hue, L., Meijer, A. J., van Woerkom, G. M., and Plomp, P. J. A. M. (1990) J. Biol. Chem. 265, 955-959). We postulate that this effect may relate to inhibition of hepatic glucose-6-P hydrolysis by a proline-derived metabolite. We tested this hypothesis with isolated livers from rats fasted 48 h which were perfused with L-proline or L-glutamine. Net glucose and net glycogen production and levels of glucose-6-P and certain other hepatic metabolites were measured. The data obtained support our hypothesis by demonstrating fundamental differences in the metabolic fates of proline and glutamine in the liver. Both pass through alpha-ketoglutarate in the initial stage of gluconeogenesis, but proline supports hepatic glycogen formation while glutamine does not. The concomitant increase in hepatic glucose-6-P and proline-associated glyconeogenesis suggests that inhibition of glucose-6-P hydrolysis by a proline-derived metabolite may divert glucose-6-P produced from proline from glucose production and to glycogen synthesis. This conclusion is supported by the effects of perfusions with and without proline (3-mercaptopicolinate present) on (a) glyconeogenesis and glucose formation from dihydroxyacetone, (b) net glucose uptake and glycogen formation with 30 mM glucose as substrate, and (c) glucose production from endogenous glycogen in perfused livers from fed rats.  相似文献   

2.
Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasis.  相似文献   

3.
R C Nordlie 《Life sciences》1979,24(26):2397-2404
Glucose-6-phosphatase is a multifunctional enzyme, displaying potent ability to synthesize as well as hydrolyze Glc-6-P. These multifunctional characteristics have been exploited in studies of the extended distribution of the enzyme, and their physiological significance has been examined. The enzyme is considerably more widely distributed than previously suspected. It has been found in pancreas, adrenals, lung, testes, spleen, and brain as well as in liver, kidney, and mucosa of small intestine. Approximately 15–20% of total hepatic glucose-6-phosphatase-phosphotransferase is present in nuclear membrane, 75–80% is found in endoplasmic reticulum, and small amounts have been detected also in plasma membrane and repeatedly-washed mitochondria. Both hydrolytic and synthetic functions, in constant proportions, have been found in livers of 21 species of birds, amphibia, reptiles, crustacea, fishes, and mammals (including man) studied. With 5 mM phosphoryl donor and 100 mM D-glucose as substrates, carbamyl-P:glucose phosphotransferase activity of glucose-6-phosphatase exceeded that of glucokinase by 5–50 fold. While latencies of activities of isolated microsomal preparations are extensive, those of nuclear membranes are not. Latencies of activities of intact endoplasmic reticulum of permeable hepatocytes are 28% for Glc-6-P phosphohydrolase and 56% for carbamyl-P:glucose phosphotransferase. Studies with isolated perfused livers from fasted rats suggest rather convincingly that such phosphotransferase activities may function as an hepatic glucose-phosphorylating system supplemental to glucokinase and hexokinase. This conclusion is based both on comparisons of rates of glucose uptake with hepatic enzyme levels (glucokinase, hexokinase, phosphotransferase), and on observed inhibitibility of glucose uptake by ornithine and 3-0-methyl-D-glucose. The question of availability of adequate concentrations of suitable phosphoryl donor(s) in cytosol of the liver cell constitutes a principal focus for continuing studies regarding physiological functions of this enzyme.  相似文献   

4.
The aim of these studies was to investigate the effect of hyperglycemia with or without hyperinsulinemia on hepatic gluconeogenic flux, with the hypothesis that inhibition would be greatest with combined hyperglycemia/hyperinsulinemia. A glycogen phosphorylase inhibitor (BAY R3401) was used to inhibit glycogen breakdown in the conscious overnight-fasted dog, and the effects of a twofold rise in plasma glucose level (HI group) accompanied by 1) euinsulinemia (HG group) or 2) a fourfold rise in plasma insulin were assessed over a 5-h experimental period. Hormone levels were controlled using somatostatin with portal insulin and glucagon infusion. In the HG group, net hepatic glucose uptake and net hepatic lactate output substantially increased. There was little or no effect on the net hepatic uptake of gluconeogenic precursors other than lactate (amino acids and glycerol) or on the net hepatic uptake of free fatty acids compared with the control group. Consequently, whereas hyperglycemia had little effect on gluconeogenic flux to glucose 6-phosphate (G-6-P), net hepatic gluconeogenic flux was reduced because of increased hepatic glycolytic flux during hyperglycemia. Net hepatic glycogen synthesis was increased by hyperglycemia. The effect of hyperglycemia on gluconeogenic flux to G-6-P and net hepatic gluconeogenic flux was similar. We conclude that, in the absence of appreciable glycogen breakdown, the increase in glycolytic flux that accompanies hyperglycemia results in decreased net carbon flux to G-6-P but no effect on gluconeogenic flux to G-6-P.  相似文献   

5.
Hepatic genes crucial for carbohydrate and lipid homeostasis are regulated by insulin and glucose metabolism. However, the relative contributions of insulin and glucose to the regulation of metabolic gene expression are poorly defined in vivo. To address this issue, adenovirus-mediated hepatic overexpression of glucokinase was used to determine the effects of increased hepatic glucose metabolism on gene expression in fasted or ad libitum fed rats. In the fasted state, a 3 fold glucokinase overexpression was sufficient to mimic feeding-induced increases in pyruvate kinase and acetyl CoA carboxylase mRNA levels, demonstrating a primary role for glucose metabolism in the regulation of these genes in vivo. Conversely, glucokinase overexpression was unable to mimic feeding-induced alterations of fatty acid synthase, glucose-6-phosphate dehydrogenase, carnitine palmitoyl transferase I or PEPCK mRNAs, indicating insulin as the primary regulator of these genes. Interestingly, glucose-6-phosphatase mRNA was increased by glucokinase overexpression in both the fasted and fed states, providing evidence, under these conditions, for the dominance of glucose over insulin signaling for this gene in vivo. Importantly, glucokinase overexpression did not alter sterol regulatory element binding protein 1-c mRNA levels in vivo and glucose signaling did not alter the expression of this gene in primary hepatocytes. We conclude that a modest hepatic overexpression of glucokinase is sufficient to alter expression of metabolic genes without changing the expression of SREBP-1c.  相似文献   

6.
  • 1.1. The effect of incorporating D2O into the incubation medium on glycolysis and gluconeogenesis by hepatocytes from fasted rats was examined.
  • 2.2. The substitution by heavy water, D2O, at concentrations from 10 to 40%, stimulated glucose uptake, lactate production and CO2 yields from glucose. At 10 mM glucose, 40% D2O doubled glucose uptake, increased CO2 production by 40%, and increased lactate production by 350%.
  • 3.3. The stimulation of lactate production decreased at higher glucose concentrations, but was still substantial even at 80 mM glucose.
  • 4.4. There was no effect on CO2 production above glucose concentrations of 30 mM.
  • 5.5. Ten percent D2O showed little inhibition of lactate uptake, its oxidation and gluconeogenesis. At 40% D2O the inhibition ranged from 10 to 20%.
  • 6.6. No effect of D2O on the rate of glucokinase or glucose-6-phosphatase was observed.
  • 7.7. The concentration of fructose, 2,6-P was not affected by D2O
  相似文献   

7.
The nature of the pentose pathway in liver   总被引:2,自引:0,他引:2  
[2-14C]Glucose, [3,4-14C]glucose, [5-14C]glucose, [4,5,6-14C]glucose, and [1-14C]ribose were perfused through livers of rats. The rats were fed or fasted and refed. In one experiment the liver perfused was regenerating and in another phenazine methosulfate was in the perfusate. Perfusion was for 30 or 90 min. Glucose from each perfusate and liver glucose-6-P and glycogen were isolated, purified, and degraded. The distributions of 14C in the carbons of the glucoses from the glycogens are similar to the distributions from the glucose 6-phosphates. The distributions of 14C are in accord with metabolism of glucose by the classical pentose pathway and not by the L-type pathway that has been proposed to function in liver.  相似文献   

8.
Livers from fed or 24-hr fasted male rats were perfused in a recycling system. VLDL labeled with [1-14C]oleate (95% in triglyceride), produced in separate perfusions of livers from fed rats, was added to the medium as a pulse. Uptake of VLDL 14C-labeled triglyceride by livers from fasted rats was less than that from fed rats regardless of addition of oleate. During the interval in which radioactive triglyceride was taken up, the mass of triglyceride in the medium increased, indicative of the synthesis and net secretion of triglycerides. The rates of secretion of VLDL and uptake of VLDL were both more rapid in livers from fed rats in comparison to those from fasted animals. It was calculated that about 50% of the triglyceride synthesized and secreted by the liver was taken back by livers from fed rats. The VLDL from livers of fasted rats did not contain any apoE detectable by SDS gel electrophoresis or by radioimmunoassay when no fatty acid or 166 mumol of oleic acid was infused. In contrast, apoE comprised 6% of the VLDL apoprotein derived from perfusion of livers from fed animals in the absence of added fatty acid, and 20% when the fed livers were infused with 166 mumol of oleic acid. However, the net output (accumulation) of apoE by fasted liver was only two-thirds that from fed livers. When lipoprotein-free rat plasma containing apoE (4 mg/dl) was used in place of bovine serum albumin, the VLDL secreted by livers from either fed or fasted rats contained apoE and was taken up to a similar extent by such livers. These data suggested that the apoE of the d greater than 1.21 g/ml fraction was transferred to newly secreted VLDL which then stimulated uptake of the VLDL by livers from fasted rats. With further stimulation of secretion of VLDL triglyceride by infusion of 332 mumol of oleic acid/hr, the percent of apoE in the VLDL secreted by livers from fasted rats increased to 20%, which was similar to that of the VLDL produced by livers from fed rats when either 166 or 332 mumol/hr was infused. These data suggest a relationship between rates of hepatic secretion of VLDL (TG) and apoE, and the association of apoE with the secreted VLDL. During fasting, reduced secretion of both VLDL and apoE resulted in a VLDL particle that was considerably diminished in content of apoE and, therefore, that would be taken up by the liver at a reduced rate, in comparison to that observed in the fed animal.  相似文献   

9.
To investigate the sites of the free fatty acid (FFA) effects to increase basal hepatic glucose production and to impair hepatic insulin action, we performed 2-h and 7-h Intralipid + heparin (IH) and saline infusions in the basal fasting state and during hyperinsulinemic clamps in overnight-fasted rats. We measured endogenous glucose production (EGP), total glucose output (TGO, the flux through glucose-6-phosphatase), glucose cycling (GC, index of flux through glucokinase = TGO - EGP), hepatic glucose 6-phosphate (G-6-P) content, and hepatic glucose-6-phosphatase and glucokinase activities. Plasma FFA levels were elevated about threefold by IH. In the basal state, IH increased TGO, in vivo glucose-6-phosphatase activity (TGO/G-6-P), and EGP (P < 0.001). During the clamp compared with the basal experiments, 2-h insulin infusion increased GC and in vivo glucokinase activity (GC/TGO; P < 0.05) and suppressed EGP (P < 0.05) but failed to significantly affect TGO and in vivo glucose-6-phosphatase activity. IH decreased the ability of insulin to increase GC and in vivo glucokinase activity (P < 0.01), and at 7 h, it also decreased the ability of insulin to suppress EGP (P < 0.001). G-6-P content was comparable in all groups. In vivo glucose-6-phosphatase and glucokinase activities did not correspond to their in vitro activities as determined in liver tissue, suggesting that stable changes in enzyme activity were not responsible for the FFA effects. The data suggest that, in overnight-fasted rats, FFA increased basal EGP and induced hepatic insulin resistance at different sites. 1) FFA increased basal EGP through an increase in TGO and in vivo glucose-6-phosphatase activity, presumably due to a stimulatory allosteric effect of fatty acyl-CoA on glucose-6-phosphatase. 2) FFA induced hepatic insulin resistance (decreased the ability of insulin to suppress EGP) through an impairment of insulin's ability to increase GC and in vivo glucokinase activity, presumably due to an inhibitory allosteric effect of fatty acyl-CoA on glucokinase and/or an impairment in glucokinase translocation.  相似文献   

10.
1. The influence of ethanol on the metabolism of livers from fed and starved rats has been studied in liver-perfusion experiments. Results have been obtained on oxygen consumption and carbon dioxide production, on glucose release and uptake by the liver and on changes in the concentrations of lactate and pyruvate and of β-hydroxybutyrate and acetoacetate in the perfusion medium. 2. Oxygen consumption and carbon dioxide production were lower in livers from starved rats than in livers from fed rats. Ethanol had no effect on the oxygen consumption of either type of liver. After the addition of ethanol to the perfusion medium carbon dioxide production ceased almost completely, the change being faster in livers from starved rats. 3. With livers from fed rats glucose was released from the liver into the perfusion medium. This release was slightly greater when ethanol was present. With livers from starved rats no release of glucose was observed, and when ethanol was added a marked uptake of glucose from the medium was found. A simultaneous release of glycolytic end products, lactate and pyruvate, into the medium occurred. 4. Acetate was the main metabolite accumulating in the perfusion medium when ethanol was oxidized. With livers from starved rats a slightly increased formation of ketone bodies was found when ethanol was present. 5. The lactate/pyruvate concentration ratio in the perfusion medium increased from 10 to 87 with livers from fed rats and from 20 to 171 with livers from starved rats when the livers were perfused with ethanol in the medium. The β-hydroxybutyrate/acetoacetate concentration ratio increased from 0·8 to 7·6 with livers from fed rats and from 1·0 to 9·5 with livers from starved rats when ethanol was added to the medium. 6. The effects of ethanol are discussed and related to changes in the redox state of the liver that produce new conditions for some metabolic pathways.  相似文献   

11.
Gluconeogenesis increases during exercise, which is associated with elevated concentrations of lactate and glycerol in blood. This study was undertaken to determine if the exercise-induced increase in gluconeogenesis is due to increased hepatic extraction efficiency of glucose precursors. The net hepatic uptake and extraction ratios were determined for selected glucose precursors before and during exercise. The hepatic uptake of lactate and glycerol increased during exercise in fed and fasted animals, but extraction ratios of lactate and glycerol increased only in fed animals. Thus, the exercise-induced increase in gluconeogenesis is due to increased substrate supply and to hepatic extraction efficiency under certain circumstances, which is comparable to the situation in man.  相似文献   

12.
The short-term effect of L-tri-iodothyronine (T3) on hepatic Ca2+ uptake from perfusate was compared with changes induced by T3 on cellular respiration and glucose output in isolated perfused livers from fasted and fed rats. The same parameters were also studied after the addition of glucagon or vasopressin. T3 (1 microM) induced Ca2+ uptake from the perfusate into the liver within minutes, and the time course was similar to that for stimulation of respiration and gluconeogenesis in livers from fasted rats, and for the stimulation of respiration and glucose output in livers from fed rats. The effects were dose-dependent in the range 1 microM-0.1 nM. Similar changes in the same parameters could be observed with glucagon and vasopressin, but with a completely different time course. Also, the influence of the T3 analogues L-thyroxine (L-T4), 3,5-di-iodo-L-thyronine (L-T2) and 3,3',5-tri-iodo-D-thyronine (D-T3) on hepatic energy metabolism was examined. Whereas D-T3 had practically no effect, L-T4 and L-T2 caused changes in Ca2+ uptake, O2 consumption and gluconeogenesis in livers from fasted rats similar to those with T3. It is concluded that changes in mitochondrial and cytosolic Ca2+ concentrations are involved in the stimulation of respiration and glucose metabolism observed with T3, glucagon and vasopressin.  相似文献   

13.
Flux through the glucose/glucose 6-phosphate cycle in cultured hepatocytes was measured with radiochemical techniques. Utilization of [2-3H]glucose was taken as a measure of glucokinase flux. Liberation of [14C]glucose from [U-14C]glycogen and from [U-14C]lactate, as well as the difference between the utilization of [2-3H]glucose and of [U-14C]glucose, were taken as measures of glucose-6-phosphatase flux. At constant 5 mM-glucose and 2 mM-lactate concentrations insulin increased glucokinase flux by 35%; it decreased glucose-6-phosphatase flux from glycogen by 50%, from lactate by 15% and reverse flux from external glucose by 65%, i.e. overall by 40%. Glucagon had essentially no effect on glucokinase flux; it enhanced glucose-6-phosphatase flux from glycogen by 700%, from lactate by 45% and reverse flux from external glucose by 20%, i.e. overall by 110%. At constant glucose concentrations cellular glucose 6-phosphate concentrations were essentially not altered by insulin, but were increased by glucagon by 230%. In conclusion, under basic conditions without added hormones the glucose/glucose 6-phosphate cycle showed only a minor net glucose uptake, of 0.03 mumol/min per g of hepatocytes; this flux was increased by insulin to a net glucose uptake of 0.21 mumol/min per g and reversed by glucagon to a net glucose release of 0.22 mumol/min per g. Since the glucose 6-phosphate concentrations after hormone treatment did not correlate with the glucose-6-phosphatase flux, it is suggested that the hormones influenced the enzyme activity directly.  相似文献   

14.
Perfusion of livers from fed and fasted rats with 0.07--0.1 mM t-butyl hydroperoxide for 15 min decreased the levels of reduced glutathione (GSH) by 1.5 mumol/g liver in both nutritional states. Glutathione disulfide (GSSG) was increased by 70 and 140 nmol/g liver and glutathione mixed disulfides enhanced by 45 and 150 nmol/g liver in livers from fed and fasted animals, respectively. The ratio of GSH/GSSG was decreased from 243 to 58 in fed animals, and from 122 to 8 in fasted animals. The increase of GSSG and the mixed disulfides was nearly parallel until an apparently critical low GSH content of 1.5 mumol/g was reached. Only in livers from fasted rats 14CO2-production from [1-14C]glucose was stimulated upon t-butyl hydroperoxide infusion at the employed rates. Flux of glucose through pentose phosphate cycle rose from 8 to 12% of glucose utilization via glycolysis, whereas in livers from fed animals this portion remained unchanged at 8% Dithio-erythritol reversed pentose phosphate cycle activity as well as GSSG and protein-bound glutathione contents to the original levels. In livers from fasted rats the activity of glucose-6-phosphate dehydrogenase was increased by 34% by t-butyl hydroperoxide infusion.  相似文献   

15.
In pancreatic islets removed from rats fasted for 48 hours, the insulin secretory response to glucose is decreased. Although the activity of phosphoglucomutase is unaffected by fasting, the decrease in glucose-stimulated insulin release coincides with a suppression of the glucose-induced increment in both glucose-1,6-P2 content and lactate or pyruvate output. These findings are compatible with a regulatory role of glucose-1,6-P2 in the control of glycolysis in pancreatic islets.  相似文献   

16.
Twenty-five metabolites of glucose, gluconeogenic substrates, and related compounds were examined as potential inhibitors of glucose-6-phosphatase (EC 3.1.3.9) catalytic unit and substrate transport function, using disrupted and intact rat liver microsomes. Inhibitions (competitive) were noted with six. Calculated per cent inhibitions with presumed near-physiologic concentrations of inhibitor and substrate were small. However, when hepatic fructose-1-P concentration is elevated in response to a fructose load, inhibition of glucose-6-phosphatase by fructose-1-P may play a regulatory role, along with fructose-1-P-associated deinhibition of glucokinase, by directing glucose-6-P away from glucose formation and towards glycogen synthesis and glycolysis.  相似文献   

17.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

18.
Glucose uptake/production was studied as a function of varied glucose loadsin isolated perfused livers from glucagon-treated alloxan-diabetic rats. Uptake of D-[U-14C]glucose was seen at all levels studied - 9.5–71 mM. In studies with unlabelled D-glucose carried out in the absence of 3-mercaptopicolinate, livers of diabetic rats showed a net production of glucose with perfusate glucose levels less than 22 mM. Above this level, these livers exhibited a time- and concentration-dependent net uptake of glucose for the period of 20–30 min. When 4 mM 3-mercaptopicolinate, which inhibited gluconeogenesis from endogenous substrates, was included in perfusates, a continuous net uptake of unlabelled glucose was observed at all levels above 4 mM. This lowering of the null-point, cross-over glucose concentration was shown to relate mechanistically to the observed reduction in steady hepatic glucose 6-phosphate level produced by mercaptopicolinate. The need for supplemental mechanisms of glucose utilization by high Kww hepatic enzyme(s) operative in the virtual absence of insulin-dependent glucokinase also is indicated by these observations and by kinetic analysis.  相似文献   

19.
Gluconeogenic pathway in liver and muscle glycogen synthesis after exercise   总被引:1,自引:0,他引:1  
To determine whether prior exercise affects the pathways of liver and muscle glycogen synthesis, rested and postexercised rats fasted for 24 h were infused with glucose (200 mumol.min-1.kg-1 iv) containing [6-3H]glucose. Hyperglycemia was exaggerated in postexercised rats, but blood lactate levels were lower than in nonexercised rats. The percent of hepatic glycogen synthesized from the indirect pathway (via gluconeogenesis) did not differ between exercised (39%) and nonexercised (36%) rats. In red muscle, glycogen was synthesized entirely by the direct pathway (uptake and phosphorylation of plasma glucose) in both groups. However, only approximately 50% of glycogen was formed via the direct pathway in white muscle of exercised and nonexercised rats. Therefore prior exercise did not alter the pathways of tissue glycogen synthesis. To further study the incorporation of gluconeogenic precursors into muscle glycogen, exercised rats were infused with either saline, lactate (100 mumol.min-1.kg-1), or glucose (200 mumol.min-1.kg-1), containing [6-3H]glucose and [14C(U)]lactate. Plasma glucose was elevated one- to twofold and three- to fourfold by lactate and glucose infusion, respectively. Plasma lactate levels were elevated by about threefold during both glucose and lactate infusion. Glycogen was partially synthesized via an indirect pathway in white muscle and liver of glucose- or lactate-infused rats but not in saline-infused animals. Thus participation of an indirect pathway in white skeletal muscle glycogen synthesis required prolonged elevation of plasma lactate levels produced by nutritive support.  相似文献   

20.
D-mannose is an essential monosaccharide constituent of glycoproteins and glycolipids. However, it is unknown how plasma mannose is supplied. The aim of this study was to explore the source of plasma mannose. Oral administration of glucose resulted in a significant decrease of plasma mannose concentration after 20 min in fasted normal rats. However, in fasted type 2 diabetes model rats, plasma mannose concentrations that were higher compared with normal rats did not change after the administration of glucose. When insulin was administered intravenously to fed rats, it took longer for plasma mannose concentrations to decrease significantly in diabetic rats than in normal rats (20 and 5 min, respectively). Intravenous administration of epinephrine to fed normal rats increased the plasma mannose concentration, but this effect was negated by fasting or by administration of a glycogen phosphorylase inhibitor. Epinephrine increased mannose output from the perfused liver of fed rats, but this effect was negated in the presence of a glucose-6-phosphatase inhibitor. Epinephrine also increased the hepatic levels of hexose 6-phosphates, including mannose 6-phosphate. When either lactate alone or lactate plus alanine were administered as gluconeogenic substrates to fasted rats, the concentration of plasma mannose did not increase. When lactate was used to perfuse the liver of fasted rats, a decrease, rather than an increase, in mannose output was observed. These findings indicate that hepatic glycogen is a source of plasma mannose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号