首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hau PM  Tsang CM  Yip YL  Huen MS  Tsao SW 《PloS one》2011,6(6):e21176
The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.  相似文献   

2.
The Epstein-Barr virus (EBV)-encoded LMP1 protein is an important component of the process of transformation by EBV. LMP1 is essential for transformation of B lymphocytes, most likely because of its profound effects on cellular gene expression. Although LMP1 is expressed in the majority of nasopharyngeal carcinoma (NPC) tumors, the effect of LMP1 on cellular gene expression and its contribution to the development of malignancy in epithelial cells is largely unknown. In this study the effects of LMP1 on the expression and tyrosine kinase activity of the epidermal growth factor receptor (EGFR) were investigated in C33A human epithelial cells. Stable or transient expression of LMP1 in C33A cells increased expression of the EGFR at both the protein and mRNA levels. In contrast, expression of the EGFR was not induced by LMP1 in EBV-infected B lymphocytes. Stimulation of LMP1-expressing C33A cells with epidermal growth factor (EGF) caused rapid tyrosine phosphorylation of the EGFR (pp170) as well as several other proteins, including pp120, pp85, pp75, and pp55, indicating that the EGFR induced by LMP1 is functional. LMP1 also induced expression of the A20 gene in C33A epithelial cells. In C33A cells, LMP1 expression increased the proliferative response to EGF, as LMP1-expressing C33A cells continued to increase in number when plated in serum-free media supplemented with EGF, while the neo control cells exhibited very low levels of viability and did not proliferate. Immunoblot analysis of protein extracts from nude mouse-passaged NPC tumors also demonstrated that the EGFR is overexpressed in primary NPC tumors as well as those passaged in nude mice. This study suggests that the alteration in the growth patterns of C33A cells expressing LMP1 is a result of increased proliferative signals due to enhanced EGFR expression, as well as protection from cell death due to LMP1-induced A20 expression. The induction of EGFR and A20 by LMP1 may be an important component of EBV infection in epithelial cells and could contribute to the development of epithelial malignancies such as NPC.  相似文献   

3.
Cells which are highly proliferative typically lack expression of differentiated, lineage-specific characteristics. Id2, a member of the helix-loop-helix (HLH) protein family known to inhibit cell differentiation, binds to the retinoblastoma protein (pRb) and abolishes its growth-suppressing activity. We found that Id2 but not Id1 or Id3 was able to bind in vitro not only pRb but also the related proteins p107 and p130. Also, an association between Id2 and p107 or p130 was observed in vivo in transiently transfected Saos-2 cells. In agreement with these results, expression of Id1 or Id3 did not affect the block of cell cycle progression mediated by pRb. Conversely, expression of Id2 specifically reversed the cell cycle arrest induced by each of the three members of the pRb family. Furthermore, the growth-suppressive activities of cyclin-dependent kinase inhibitors p16 and p21 were efficiently antagonized by high levels of Id2 but not by Id1 Id3. Consistent with the role of p16 as a selective inhibitor of pRb and pRb-related protein kinase activity, p16-imposed cell cycle arrest was completely abolished by Id2. Only a partial reversal of p21-induced growth suppression was observed, which correlated with the presence of a functional pRb. We also documented decreased levels of cyclin D1 protein and mRNA and the loss of cyclin D1-cdk4 complexes in cells constitutively expressing Id2. These data provide evidence for important Id2-mediated alterations in cell cycle components normally involved in the regulatory events of cell cycle progression, and they highlight a specific role for Id2 as an antagonist of multiple tumor suppressor proteins.  相似文献   

4.
CASK inhibits ECV304 cell growth and interacts with Id1   总被引:1,自引:0,他引:1  
Calcium/calmodulin-dependent serine protein kinase (CASK) is generally known as a scaffold protein. Here we show that overexpression of CASK resulted in a reduced rate of cell growth, while inhibition of expression of endogenous CASK via RNA-mediated interference resulted in an increased rate of cell growth in ECV304 cells. To explore the molecular mechanism, we identified a novel CASK-interacting protein, inhibitor of differentiation 1 (Id1) with a yeast two-hybrid screening. Furthermore, endogenous CASK and Id1 proteins were co-precipitated from the lysates of ECV304 cells by immunoprecipitation. Mammalian two-hybrid protein-protein interaction assays indicated that CASK possessed a different binding activity for Id1 and its alternative splicing variant. It is known that Id proteins play important roles in regulation of cell proliferation and differentiation. Thus, we speculate that the regulation of cell growth mediated by CASK may be involved in Id1. Our findings indicate a novel function of CASK, the mechanism that remains to be further investigated.  相似文献   

5.
6.
7.
Host range mutants of Schmidt-Ruppin v-src that transform chicken embryo fibroblasts (CEF) but not Rat-2 cells were generated previously by linker insertion-deletion mutagenesis (J. E. DeClue and G. S. Martin, J. Virol. 63:542-554, 1989). One of these mutants, SRX5, in which Tyr-416 is substituted by the sequence Ser Arg Asp, retained high levels of kinase activity in vitro and in vivo, both in CEF and in Rat-2 cells. Phosphorylation of p36 (the calpactin I heavy chain) was drastically reduced in cells expressing SRX5 src, suggesting that the phenotype of SRX5 results from an alteration in substrate recognition by the src kinase. Three mutants, SPX1, SHX13, and XD6, containing linker insertions or small deletions within the src homology 2 (SH2) region, induced reduced levels of kinase activity in both CEF and Rat-2 cells. However, the residual levels of kinase activity in Rat-2 cells were above the threshold at which wild-type pp60v-src transforms Rat-2 cells, indicating that the reduction in kinase activity was not sufficient to account for the failure to transform. Cells infected by these mutants exhibited reduced levels of phosphorylation of 120- and 62-kDa proteins. We have reported elsewhere (M. F. Moran, C. A. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson, Proc. Natl. Acad. Sci. USA 87:8622-8626, 1990) that ras GTPase-activating protein GAP and associated protein p62 are not tyrosine phosphorylated in Rat-2 cells expressing SHX13 or XD6. The transformation defect in Rat-2 cells may result from the failure to phosphorylate those proteins. The fifth mutant, XD4, contains a deletion which removes all of the src homology 3 (SH3) and most of the SH2 sequences of src. The protein encoded by XD4 is active as a kinase when expressed in CEF, indicating that in CEF the SH2 and SH3 regions of v-src are not necessary for kinase activity and transformation. The XD4 src product is not tyrosine phosphorylated and is inactive as a kinase when expressed in Rat-2 cells. Thus, host cell factors can affect the tyrosine phosphorylation and activity of the v-src kinase in the absence of the SH2 and SH3 regions. These results indicate that the host-dependent transformation phenotype results from alterations in src kinase activity and substrate specificity.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
LMP1 strain variants: biological and molecular properties   总被引:5,自引:0,他引:5       下载免费PDF全文
The ubiquitous herpesvirus Epstein-Barr virus (EBV) is linked to the development of several malignancies, including nasopharyngeal carcinoma. Latent membrane protein 1 (LMP1) is considered the EBV oncogene as it is necessary for EBV-induced transformation of B lymphocytes and is able to transform Rat-1 fibroblasts. LMP1 can activate a wide array of signaling pathways, including phosphatidylinositol 3-kinase (PI3K)-Akt and NF-kappaB. Six sequence variants of LMP1, termed Alaskan, China 1, China 2, Med+, Med-, and NC, have been identified, and individuals can be infected with multiple variants. The frequencies of detection of these variants differ for various EBV-associated malignancies from different geographic regions. In this study, the biological and signaling properties of the LMP1 variants have been characterized. All of the LMP1 variants transformed Rat-1 fibroblasts, induced increased motility of HFK cells, and induced increased homotypic adhesion of BJAB cells. While all the variants activated the PI3K-Akt signaling pathway to similar extents, the Alaskan, China 1, and Med+ variants had limited binding to the E3 ubiquitin ligase component homologue of Slimb and had slightly enhanced NF-kappaB signaling. These findings indicate that the signature amino acid changes of the LMP1 variants do not hinder or enhance their in vitro transforming potentials or affect their signaling properties.  相似文献   

16.
B Chen  B H Han  X H Sun    R W Lim 《Nucleic acids research》1997,25(2):423-430
We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.  相似文献   

17.
The Id1 protein is critical for endothelial cell angiogenesis, and this function is particularly relevant to cancer development, cardiovascular disease, and wound healing. We hypothesized that Id1 enhanced migration and tubulogenesis by controlling the expression and function of p53. In this study, we examined cell migration following Id1 overexpression and silencing endothelial cells. The results showed that overexpression of Id1 enhanced cell migration and increased beta1-integrin expression, but inhibition of beta1-integrin blocked motility even in clones overexpressing Id1, suggesting that Id1 regulated motility through beta1-integrin. Further analysis revealed that p53, whose expression and distribution is regulated by Id1, was critical for cell migration, and may be involved in regulating the expression of beta1-integrin. Inhibiting p53 function using PFT-α, a functional inhibitor of p53, increased the expression of beta1-integrin and promoted cell migration even in Id1-silencing endothelial cells, demonstrating that the Id1 knockdowns induced inhibition of endothelial cell migration and the expression of beta1-integrin were controlled by p53. In addition, Id1-p53 pathway regulated the cytoskeleton formation and tubulogenesis. These results demonstrate that Id1-induced beta1-integrin expression in endothelial cells and the function of Id1 in cell migration and tubulogenesis are dependent on p53.  相似文献   

18.
19.
Inhibitor of differentiation protein-2 (Id2) is a dominant negative helix-loop-helix (HLH) protein, and a positive regulator of proliferation, in various cells. The N-terminal region of Id2 contains a consensus cdk2 phosphorylation sequence SPVR, which may be involved with the induction of apoptosis, at least in myeloid 32d.3 cells. However, the role of Id2 phosphorylation at serine 5 in skeletal muscle cells is unknown. The objective of this study was to determine if the phosphorylation of Id2 at serine 5 alters its cellular localization and its role in apoptosis in C2C12 myoblasts. Overexpression of wild type Id2 decreased MyoD protein expression, which corresponded to the increased binding of Id2 to basic HLH proteins E47 and E12. Bromodeoxyuridine incorporation was significantly decreased by the overexpression of phospho-ablated Id2 (S5A); conversely, overexpression of wild type Id2 increased cellular proliferation. The subcellular localization of Id2 and phospho-mimicking Id2 (S5D) were predominantly nuclear compared to S5A. The decreased nuclear localization of S5A corresponded to a decrease in cellular proliferation, and an increase in apoptosis. These data suggest that unphosphorylated Id2 is primarily localized in the cytosol, where it is growth suppressive and potentially pro-apoptotic. These results imply that reducing unphosphorylated Id2 may improve the pool of myoblasts available for differentiation by increasing proliferation and inhibiting apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号