首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   

2.
Li GP  Seidel GE  Squires EL 《Theriogenology》2003,59(5-6):1143-1155
Five experiments were designed to study the fertilizability and development of bovine oocytes fertilized by intracytoplasmic sperm injection (ICSI) with stallion spermatozoa. Experiment 1 determined the time required for pronuclear formation after ICSI. Equine sperm head decondensation began 3 h after ICSI; 42% were decondensed 6 h after ICSI. Male pronuclei (MPN) began to form 12 h after ICSI. Female pronuclei (FPN), however, formed as early as 6 h after ICSI. In Experiment 2, ionomycin, ionomycin plus 6-dimethylaminopurine (DMAP), and thimerosal were used to activate ICSI ova. None of the ICSI ova cleaved after treatment with thimerosal. Ionomycin activation after 24 and 30 h of oocyte maturation resulted in 29 and 48% cleavage rates, respectively. Ionomycin combined with DMAP resulted in 49, 6 and 3% cleavage, morula and blastocyst rates, respectively, when oocytes were activated after 24 h maturation. In Experiment 3, rates of cleavage (45-60%) and development to morulae (4-13%) and blastocysts (1-5%) stages following ICSI were not different (P>0.05) among three stallions. Treatment of stallion spermatozoa with ionomycin did not affect cleavage or development of ova fertilized by ICSI. The chromosomal constitution of blastocysts derived from ICSI was bovine, not bovine and equine hybrids. In Experiment 4, to make male and FPN form synchronously, colchicine and DMAP were used for 4 h to inhibit oocytes at metaphase during activation; 63% of oocytes were still at metaphase 8h after ICSI when treated with colchicine, and 50% of sperm nuclei were decondensed. About 18 h after ICSI, 21 and 50% male and FPN had formed, respectively, but cleavage rates were low, and only 1% developed to morulae. In Experiment 5, to test if capacitated equine sperm could fuse with the bovine oolemma, capacitated spermatozoa were injected subzonally (SUZI). Of the 182 SUZI oocytes, 49 (27%) contained extruded second polar bodies. After activation of oocytes with second polar bodies, 44, 22 and 15% developed to 2-, 4- and 8-cell stages, respectively, but development stopped at the 8-cell stage. None of the unactivated oocytes cleaved. In conclusion, equine spermatozoa can decondense and form MPN in bovine oocytes after ICSI, but subsequent embryonic development is parthenogenetic with only bovine chromosomes being found.  相似文献   

3.
The mechanism of Ca2+ release induced by modification of sulfhydryl groups and the subsequent activation of porcine oocytes were investigated. Thimerosal, a sulfhydryl-oxidizing compound, induced Ca2+ oscillation in matured oocytes. In thimerosal-preincubated oocytes, the amount of Ca2+ released after microinjection of inositol 1,4,5-trisphosphate (InsP3) or ryanodine increased strikingly, indicating that thimerosal potentiated both InsP3- and ryanodine-sensitive Ca2+ release pathways. Thimerosal also enhanced the sensitivity of oocytes to microinjected Ca2+ so that in pretreated oocytes a Ca2+ injection triggered a larger transient. Heparin at concentrations that normally block the InsP3-induced Ca2+ release were without effect; higher doses significantly increased the time leading up to the first spike. The thimerosal-induced Ca2+ release could not be blocked by procaine, and it did not require the formation of InsP3 since preinjection with neomycin did not prevent the oscillation. Immunocytochemistry revealed that thimerosal treatment destroyed the meiotic spindle, preventing further development, an effect that could be reversed by dithiothreitol. The combined thimerosal/dithiothreitol treatment triggered second polar body extrusion in 50% of the oocytes, and as a result of this activation scheme approximately 15% of the in vitro- and approximately 60% of the in vivo-matured oocytes developed to blastocyst during a 7-day culture in vitro.  相似文献   

4.
The objective of this study was to optimize the protocols for bovine oocytes activation through comparing the effectiveness of different treatments on the activation and subsequent development of oocytes and examining the effects of two combined activation treatments on the blastocyst apoptosis and ploidy. Cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After maturation, cumulus-free oocytes were activated according to the experiment designs. Activated oocytes were cultured in vitro in modified synthetic oviductal fluid (mSOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage. In Experiment 1, the matured oocytes were treated with single activation agents, including ionomycin (5 microM for 5 min), ethanol (7% for 7 min), calcium ionophore A23187 (5 microM for 5 min) or strontium (10mM for 5h). The pronuclear formation and cleavage rate were higher significantly in ionomycin (39.0 and 30.7%) and ethanol (41.5 and 28.1%) treatment alone compared to other treatments (9.7-25.2 and 11.3-23.7%, respectively, P<0.05). Very low blastocyst rates (3.9-5.3%) resulted which were not significantly different among treatments (P>0.05). For the combined activation treatment (Experiment 2), the same concentrations of ionomycin and ethanol as in Experiment 1 were used in combination with either 6-dimethylaminopurine (6-DMAP, 2.0 mM for 3 h) or cycloheximide (CHX)+cytochalasin B (CB, 10 microg/ml for 3 h). The pronuclear formation, cleavage rate, blastocyst rate and cell number of blastocyst were higher significantly (P<0.05) in ionomycin+6-DMAP treatment (67.1, 69.2, 28.0 and 91.3%, respectively) and ethanol+CHX+CB treatment (68.9, 70.2, 25.5 and 89.3%, respectively) compared to other treatments (11.7-58.1, 10.2-47.1, 1.5-24.2 and 34.2-62.7%, respectively). In Experiment 3, the parthenogenetic blastocysts produced by activation with ionomycin+6-DAMP and ethanol+CHX+CB and in vitro fertilized blastocysts (control group) were examined for apoptosis using a terminal deoxynucleotidyl transferase mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The ethanol+CHX+CB treatment (7.0%) showed significantly lower blastocyst apoptosis index compared to ionomycin+6-DAMP treatment (9.1%, P<0.05). Furthermore, the chromosomal composition in the parthenotes embryos differed (P<0.05) among treatments. The percentage of haploid parthenotes was higher in ionomycin+6-DMAP treatment than ethanol+CHX+CB treatment. These results suggested that ethanol+CHX+CB treatment was more favorable protocol for parthenogenesis of bovine oocytes.  相似文献   

5.
The possibility of artificially inducing activation of MII buffalo oocytes may allow us to evaluate indirectly the quality of oocytes after in vitro maturation. The aim of this work was to compare buffalo embryo development after IVF and after chemical activation by two different agents. A further goal was to evaluate the effects of aging of oocytes on post-parthenogenetic and post-fertilization development. In Experiment 1 cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After IVM the COCs were either fertilized in vitro (positive control) or activated with ethanol and ionomycin, both followed by immediate exposure to 6-diethylaminopurine (6-DMAP) for 4 h. In vitro culture (IVC) was carried out up to the blastocyst stage. In Experiment 2 COCs were matured in vitro for 18, 21, 24, 27 and 30 h before activation was triggered with ethanol, followed by 6-DMAP. In Experiment 3 COCs were fertilized in vitro at 18, 21, 24, 27 and 30 h post-maturation. Ethanol activation gave better results than the IVF control group, with higher cleavage rate (71.4 +/- 7.8 versus 55.8 +/- 5.8, respectively; P < 0.05) and a higher proportion of oocytes developing into morulae-blastocysts (32.6 +/- 6.5 versus 22.9 +/- 7.5, respectively; P < 0.05). Within the activation groups, ethanol supported the highest development in terms of cleavage (71.4 +/- 7.8 versus 59.4 +/- 10.7; P < 0.05) and morulae-blastocysts rate (32.6 +/- 6.5 versus 25.7 +/- 8.3; n.s.). It was also demonstrated that aging negatively affects post-parthenogenetic and post-fertilization development.  相似文献   

6.
Pronuclear formation, and the chromosomal constitution and developmental capacity of bovine zygotes formed by intracytoplasmic sperm injection with freeze-dried (lyophilized) spermatozoa were evaluated. Frozen-thawed spermatozoa were selected, freeze-dried, and stored at 4 degrees C until use. After 22-24 h of in vitro maturation oocytes were denuded and injected singly with a lyophilized spermatozoon. Injected oocytes were activated by treatment with 10 microM ionomycin (5 min) alone and in combination with 1.9 mM 6-dimethylaminopurine (DMAP) for 4 h. Ionomycin plus DMAP activation treatment resulted in a significantly higher proportion of sperm-injected oocytes with two pronuclei than was found after activation with ionomycin alone (74% vs. 56%; P < 0.03). The rates of cleavage, morula, and blastocyst development of sperm-injected oocytes treated with ionomycin plus DMAP were higher than after activation with ionomycin alone (63.3%, 34.2%, and 29.6% vs. 44.7%, 18.7%, and 10.6%, respectively; P < 0.05). Seventy-three percent of blastocysts produced with lyophilized sperm were diploid. These results demonstrate that in vitro-matured bovine oocytes can be fertilized with freeze-dried sperm cells, and that resultant zygotes can develop into karyotypically normal blastocysts.  相似文献   

7.
Immature oocytes of many species are incompetent to undergo cortical granule (CG) exocytosis upon fertilization. In mouse eggs, CG exocytosis is dependent primarily on an inositol 1,4,5-trisphosphate (IP3)-mediated elevation of intracellular calcium ([Ca2+]i). While deficiencies upstream of [Ca2+]i release are known, this study examined whether downstream deficiencies also contribute to the incompetence of preovulatory mouse oocytes to release CGs. The experimental strategy was to bypass upstream deficiencies by inducing normal, fertilization-like [Ca2+]i oscillations in fully grown, germinal vesicle (GV) stage oocytes and determine if the extent of CG exocytosis was restored to levels observed in mature, metaphase II (MII)-stage eggs. Because IP3 does not stimulate a normal Ca2+ response in GV-stage oocytes, three alternate methods were used to induce oscillations: thimerosal treatment, electroporation, and sperm factor injection. Long-lasting oscillations from thimerosal treatment resulted in 64 and 10% mean CG release at the MII and GV stages, respectively (P < 0.001). Three electrical pulses induced mean [Ca2+]i elevations of approximately 730 and 650 nM in MII- and GV-stage oocytes, respectively, and 31% CG release in MII-stage eggs and 9% in GV-stage oocytes (P < 0.001). Sperm factor microinjection resulted in 86% CG release in MII-stage eggs, while similarly treated GV-stage oocytes exhibited < 1% CG release (P < 0.001). Taken together, these results demonstrate a deficiency downstream of [Ca2+]i release which is developmentally regulated in the 12 h prior to ovulation.  相似文献   

8.
High concentration of inositol 1,4,5-trisphosphate in sea urchin sperm   总被引:1,自引:0,他引:1  
We measured inositol 1,4,5-trisphosphate (InsP3) content of sea urchin gametes by using a specific protein binding assay, and found that a spermatozoon contains 4 x 10(-19) to 1 x 10(-18) moles of InsP3 before the acrosome reaction. Since the acrosome reaction has previously been shown to increase the InsP3 content of sperm severalfold, our measurement indicates that a spermatozoon contains at least 2 x 10(-18) moles of InsP3 at fertilization, corresponding to a concentration in the spermatozoon of about 1 mM. The threshold for activation of eggs by injection of InsP3 dissolved in a much larger volume of solution has been found to be about 3 x 10(-18) moles, corresponding to a concentration in the injectate of 1 microM. This suggests that sea urchin sperm may contain enough InsP3 to activate eggs. With an electroporation method, we also showed that sperm extract acts on eggs only from inside, consistent with a primary messenger role for InsP3.  相似文献   

9.
Changes in intrafollicular concentrations of different forms of inhibin (free alpha-subunits and alpha beta dimers) occur during follicle development and may influence the oocyte maturation process. The aim of this study was to investigate the effects of inhibin A and free alpha-subunit (pro-alpha C) isolated from bovine follicular fluid on maturation of bovine cumulus-oocyte complexes, as reflected by their competence for embryo development after in vitro fertilization. Bovine cumulus-oocyte complexes were isolated from ovaries obtained from an abattoir and were cultured for 22-24 h at 38.5 degrees C in TCM-199 medium supplemented with 10% oestrous cow serum, pregnant mares' serum gonadotrophin (2.5 iu ml-1) and either inhibin A (0, 0.2 and 1.0 microgram ml-1) or pro-alpha C (0, 2 and 10 micrograms ml-1). Neither inhibin A nor free alpha-subunit affected the cleavage rate of cumulus-oocyte complexes after fertilization (approximately 60%). Inhibin A reduced the proportion of cleaved oocytes reaching the eight-cell stage by 19% (P < 0.05), but did not affect the yield of blastocysts. However, pro-alpha C decreased the proportion of cleaved oocytes that reached the eight-cell (25%; P < 0.05) and blastocyst (28%; P < 0.05) stages. In addition, a negative correlation (r = -0.55, P < 0.001) was found between concentrations of total immunoreactive (ir) alpha-inhibin (measured by radioimmunoassay) produced by untreated control cumulus-oocyte complexes and their post-cleavage development to the blastocyst stage. In a second experiment, mouse monoclonal antibodies (20 micrograms ml-1) against two different regions of the inhibin alpha-subunit precursor (pro-region and alpha C fragment) were tested for their ability to neutralize endogenous inhibin alpha-subunit-related molecules produced by cumulus cells; control cumulus-oocyte complexes were treated with normal mouse IgG (20 micrograms ml-1). Although the cleavage rate was not affected, the yield of blastocysts was significantly higher in the presence of mouse monoclonal antibodies to both pro-alpha (77% increase; P < 0.05) and alpha C (48% increase; P < 0.05). None of the treatments tested affected endogenous production of activin-A or follistatin by cumulus-oocyte complexes. Overall, these results indicate that the inhibin alpha-subunit (pro-alpha C) has an inhibitory role in oocyte maturation which is independent of the modulatory effects of activin and follistatin.  相似文献   

10.
Immature mouse oocytes undergo spontaneous meiotic maturation when released from antral follicles into culture media. The first sign of meiotic resumption is germinal vesicle breakdown (GVB). Cytosolic free Ca2+ was measured in mouse oocytes during spontaneous maturation by monitoring fluorescence of indo-1 or fluo-3. The majority of oocytes showed a series of Ca2+ oscillations that continued for 1-3 h. Repetitive Ca2+ increases occurred every 1-3 min and lasted for 10-60 s. The Ca2+ oscillations appeared to be caused by an increase in inositol 1,4,5-trisphosphate (InsP3) because once they ceased, similar oscillations were triggered by injection of exogenous InsP3. Also, injection of the InsP3 receptor antagonist heparin (final concentration, 100 micrograms/ml) blocked the spontaneous Ca2+ oscillations. In contrast, Ca2+ oscillations induced by thimerosal were not inhibited by heparin. Treating oocytes with media containing 20 microM BAPTA/AM abolished Ca2+ oscillations in oocytes but did not affect the rate of GVB. The data show that cytosolic Ca2+ oscillations apparently caused by polyphosphoinositide turnover occur during mammalian oocyte maturation. However, the spontaneous oscillations do not appear to trigger GVB. Also, the data indicate that there are two separate Ca2+ release mechanisms in mouse oocytes, one sensitive to InsP3, the other to thimerosal.  相似文献   

11.
In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular oocytes, AII stimulated two- to fourfold increases in phosphoinositide hydrolysis and production of inositol phosphates. Injection of the glycosaminoglycan, heparin, which selectively blocks Ins(1,4,5)P3 receptors, prevented both AII-stimulated and Ins(1,4,5)P3-induced Ca2+ mobilization in Xenopus follicular oocytes but did not affect mobilization of Ca2+ by ionomycin or GTP. These results indicate that the AII-regulated process of gap junction communication between follicular cells and the oocyte operates through an Ins(1,4,5)P3-dependent mechanism rather than through transfer of Ca2+ into the ooplasm and subsequent Ca(2+)-induced Ca2+ release.  相似文献   

12.
Regardless of the presence of sperm-borne oocyte-activating factors, activation of bovine oocytes with exogenous activation stimuli is required for further development after intracytoplasmic sperm injection (ICSI). The current study was designed to develop a new activation regimen for improving the blastocyst yield after ICSI of bovine oocytes harvested from ovaries stored at 10 to 12 °C for 24 h. After ICSI, oocytes were treated with 5 μM ionomycin for 5 min, 7% ethanol for 5 or 10 min, ionomycin followed by ethanol (5 or 10 min), ionomycin followed by 10 μg/mL cycloheximide for 5 h, or ionomycin followed by 1.9 mM 6-dimethylaminopurine for 3 h. Across the activation regimens, the cleavage rates of ICSI oocytes (45% to 77%) were higher than those of parthenogenetically activated oocytes (11% to 21%; P < 0.05). Activating the ICSI oocytes with ionomycin plus ethanol improved the blastocyst yield (29% to 30%) compared with that of nontreated oocytes (12%; P < 0.05), but the other regimens did not improve the blastocyst yield (9% to 18%; P > 0.05). Higher blastocyst yields were due to increasing the proportion of ICSI oocytes that passed through the early postfertilization events until cleavage. None of the regimens have any adverse effect on the quality of the blastocysts regarding the total cell number or the proportion of the inner cell mass cells. Thus, a new activation regimen using two triggers for single calcium increase effectively improved blastocyst yield after bovine ICSI using oocytes harvested from stored ovaries.  相似文献   

13.

Background

At fertilisation, mammalian oocytes are activated by oscillations of intracellular Ca2+ ([Ca2+]i). Phospholipase Cζ, which is introduced by fertilising spermatozoon, triggers [Ca2+]i oscillations through the generation of inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release by binding to IP3 receptors located on the endoplasmic reticulum (ER) of the oocyte. Ability to respond to this activating stimulus develops during meiotic maturation of the oocyte. Here we examine how the development of this ability is perturbed when a single spermatozoon is introduced into the oocyte prematurely, i.e. during oocyte maturation.

Results

Mouse oocytes during maturation in vitro were fertilised by ICSI (intracytoplasmic sperm injection) 1 – 4 h after germinal vesicle break-down (GVBD) and were subsequently cultured until they reached metaphase II (MII) stage. At MII stage they were fertilised in vitro for the second time (refertilisation). We observed that refertilised oocytes underwent activation with similar frequency as control oocytes, which also went through maturation in vitro, but were fertilised only once at MII stage (87% and 93%, respectively). Refertilised MII oocytes were able to develop [Ca2+]i oscillations in response to penetration by spermatozoa. We found however, that they generated a lower number of transients than control oocytes. We also showed that the oocytes, which were fertilised during maturation had a similar level of MPF activity as control oocytes, which were not subjected to ICSI during maturation, but had reduced level of IP3 receptors.

Conclusion

Mouse oocytes, which were experimentally fertilised during maturation retain the ability to generate repetitive [Ca2+]i transients, and to be activated after completion of maturation.  相似文献   

14.
15.
Abstract: lonomycin, a Ca2+ ionophore, stimulated phosphoinositide breakdown in rat brain cortical slices incubated in the presence of 1.2 m M Ca2+, but, unlike muscarinic cholinergic stimulation, it had little effect on inositol 1,3,4,5-tetrakisphosphate accumulation. However, at 2 min, the increase in inositol 1,4,5-trisphosphate due to 10 μ M ionomycin was equivalent to that seen with 1μ M carbachol. Phorbol 12-myristate 13-acetate or high K+ (30 μ M ) increased inositol 1,4,5-trisphosphate, but not inositol 1,3,4,5-tetrakisphosphate accumulation. The stimulation of inositol 1,4,5-trisphosphate accumulation due to ionomycin, unlike that seen with carbachol, was abolished in buffer containing 0.2 μ M Ca2+. The increase in inositol 1,3,4,5-tetrakisphosphate accumulation in brain slices due to 1 μ M carbachol ranged from 55 to 68% of that for inositol 1,4,5-trisphosphate. Norepinephrine, NMDA, veratridine, and ouabain also increased inositol 1,4,5-tris-phosphate, but had minimal effects on inositol 1,3,4,5-tetrakisphosphate accumulation. These results suggest that there is something unique about the stimulation of inositol 1,3,4,5-tetrakisphosphate accumulation by carbachol, which is also the only one of these agents that is able to activate phosphoinositidase Cβ, in isolated rat brain membranes.  相似文献   

16.
Parthenogenetic activation of porcine oocytes by using 7% ethanol, 50 or 100 microM A23187 results in an increase in intracellular pH as does prolonged exposure to thimerosal. We attempt to specify which transporters or mechanisms are involved in the observed increase in intracellular pH during oocyte activation. Experiments were performed in the absence of sodium; the presence of 2.5 mM amiloride, a potent inhibitor of the Na(+)/H(+) antiport; in the absence of bicarbonate; and in the presence of 4, 4'-diisothiocyanatodihydrostilbene-2,2'-di-sulfonic acid, disodium salt (H(2)DIDS) for all three activation methods. These treatments had no effect on the increase in intracellular pH induced by the calcium ionophore or thimerosal, but all reduced the increase in pH (P < 0.001) in the 7% ethanol group. This suggests that the Na(+)/H(+) antiport and the HCO(3)(-)/Cl(-) exchangers are not playing a role during treatment with calcium ionophore or thimerosal, and the pH increase observed during treatment with 7% ethanol may be dependent upon a sodium or bicarbonate flux (or both) into the oocyte. Bafilomycin A1 (500 nm), an inhibitor of vacuolar-type H(+) ATPases, had no effect on 7% ethanol or thimerosal treatments, but significantly reduced the increase in intracellular pH observed during calcium ionophore treatment. This may be the result of an initial local increase in intracellular free calcium levels.  相似文献   

17.
The objective of this study was to compare the effectiveness of different methods of bovine oocyte activation following intracytoplasmic sperm injection (ICSI) in terms of oocyte cleavage and blastocyst rates, and calf production. Oocytes were harvested, post mortem, from the ovaries of Japanese Black heifers or cows. ICSI was carried out using a piezo-electric actuator. The injected or sham-injected oocytes that were assigned to three activation treatments, each replicated three times, were studied: (1) exposure to 5 microM ionomycin for 5 min (ionomycin); (2) exposure to 5 microM ionomycin for 5 min followed by culture in TCM199 for 3 h and a further 3h culture in 1.9 mM 6-dimethylaminopurine (DMAP-ionomycin+DMAP); (3) exposure to 7% ethanol in TCM199 for 5 min, 4 h after ICSI (ethanol). One or two blastocysts from the ionomycin+DMAP (8 recipients) and ethanol (17 recipients) oocyte activation treatments were non-surgically transferred into Holsteins for the study of calf production. The highest cleavage and blastocyst production rates were observed in the ionomycin+DMAP treatment (83.9% and 40.1%) by the ICSI. These rates were significantly (P<0.05) higher than those for the ionomycin oocyte activation treatment (57.6% and 18.2%) but did not differ from the ethanol treatment (75.6% and 29.4%). In the sham-injected, the highest blastocyst production rates were observed for the ionomycin+DMAP and ethanol treatments (10.7% and 11.3%). Pregnancy and birth rates for blastocysts derived from the ethanol oocyte activation treatment (58.8% and 47.4%) were significantly higher (P<0.05) than those of the ionomycin+DMAP treatment (12.5% and 9.2%). The results showed that post-ICSI oocyte activation with ethanol is more effective than activation with ionomycin alone or with ionomycin+DMAP for the production of viable blastocysts and calves.  相似文献   

18.
The objective of this study was to compare the fertilization rate of bovine oocytes matured in vitro (22, 25 or 28 hours) and in vivo (30 to 35 hours after standing estrus) following the microinjection of a single spermatozoon. A single motile spermatozoon was injected into the perivitelline space (Experiments 1 to 9), and a single immotile spermatozoon was injected into the ooplasm (Experiments 10 to 15). A single ejaculate of frozen-thawed semen was used throughout. The spermatozoa were injected either without treatment or after treatment with heparin (100 mug/ml), or Ca ionophore A23187 (0.1 muM), or co-cultured for 5 hours with bovine oviduct epithelial cells (BOEC), or they were co-cultured for 5 hours with BOEC and immobilized by freezing and thawing twice without cryoprotectant, or they remained untreated. Oocytes were placed in a droplet of hyperosmotic solution of 0.1 M sucrose in PBS to enlarge the perivitelline space (Experiments 1 to 9) or in PBS (Experiments 10 to 15). Small amounts of polyvinyl pyrrolidone (PVP) without spermatozoa were injected as a control for parthenogenetic activation. After injection, oocytes were incubated in Medium 199 for 22 hours at 39 degrees C, and they were stained with 1% aceto-orcein and examined for evidence of fertilization or parthenogenetic activation. Low rates (9 to 11%) of fertilization resulted from injection into the perivitelline space of oocytes matured for 22 hours in vitro irrespective of spermatozoa treatment. Fertilization rates were higher in oocytes matured in vivo after injection into either perivitelline space (66%) or ooplasm (74%) than in oocytes matured in vitro (9 to 44% fertilization). Surprisingly, in oocytes matured in vivo, there was no difference in the proportions fertilized by spermatozoa injection into ooplasm and parthenogenetically activated by injection of medium alone (74 and 66%, respectively).  相似文献   

19.
Chung JT  Keefer CL  Downey BR 《Theriogenology》2000,53(6):1273-1284
In the human and the mouse, intracytoplasmic sperm injection (ICSI) apparently triggers normal fertilization and may result in offspring. In the bovine, injection of spermatozoa must be accompanied by artificial methods of oocyte activation in order to achieve normal fertilization events (e.g., pronuclear formation). In this study, different methods of oocyte activation were tested following ICSI of in vitro-matured bovine oocytes. Bovine oocytes were centrifuged to facilitate sperm injection, and spermatozoa were pretreated with 5 mM dithiothreitol (DTT) to promote decondensation. Sperm-injected or sham-injected oocytes were activated with 5 microM ionomycin (A23187). Three hours after activation, oocytes with second polar bodies were selected and treated with 1.9 mM 6-dimethylaminopurine (DMAP). The cleavage rate of sperm-injected oocytes treated with ionomycin and DMAP was higher than with ionomycin alone (62 vs 27%, P < or = 0.05). Blastocysts (2 of 41 cleaved) were obtained only from the sperm-injected, ionomycin + DMAP-treated oocytes. Upon examination 16 h after ICSI, pronuclear formation was observed in 33 of 47 (70%) DMAP-treated oocytes. Two pronuclei were present in 18 of 33 (55%), while 1 and 3 pronuclei were seen in 8 of 33 (24%) and 7 of 33 (21%) oocytes, respectively. In sham-injected oocytes, pronuclear formation was observed in 15 of 38 (39%) with 9 (60%) having 2 pronuclei. Asa single calcium stimulation was insufficient and DMAP treatment could result in triploidy, activation by multiple calcium stimulations was tested. Three calcium stimulations (5 microM ionomycin) were given at 30-min intervals following ICSI. Two pronuclei were found in 12 of 41 (29%) injected oocytes. Increasing the concentration of ionomycin from 5 to 50 microM resulted in a higher rate of activation (41 vs 26%). The rate of metaphase III arrest was lower while the rate of pronuclear formation and cleavage development was higher in sperm-injected than sham-injected oocytes, suggesting that spermatozoa contribute to the activation process. Further improvements in oocyte activation following ICSI in the bovine are necessary.  相似文献   

20.
Experiments were conducted to examine the effects of (a) different activation methods, (b) incubation time in calcium-free medium and (c) bisbenzimide staining on the activation and subsequent development of pig oocytes. Oocytes were matured in vitro and activated by one of the following methods: combined thimerosal/dithiothreitol (DTT) treatment, calcium ionophore A23187 treatment followed by incubation in the presence of 6-dimethylaminopurine (6-DMAP), electroporation, and electroporation followed by incubation with cytochalasin B. There were no significant differences in the activation rate (ranging from 70.0% to 88.3%) and the percentage of cleaved embryos after activation (ranging between 48.8% and 58.8%) among the four treatment groups (p < 0.05). The rate of development of the blastocyst stage in oocytes activated by thimerosal/DTT (10.0%) or electroporation followed by cytochalasin B treatment (12.3%) was significantly higher (p < 0.05) than in the group activated with A23187/6-DMAP (2.5%). Both the activation rate and the rate of blastocyst formation in oocytes that were incubated in Ca(2+)-free medium for 8 h before thimerosal/DTT activation were significantly lower (p < 0.05) than in those incubated for 0, 1 or 4 h. Intracellular Ca2+ measurements revealed that the Ca2+ homeostasis in these oocytes were severely altered. Staining of oocytes with 5 micrograms/ml bisbenzimide for 2 h decreased the quality of blastocysts and increased the rate of degenerated embryos at day 6. Two activation protocols (thimerosal/DTT and electroproation) were used for activation after nuclear transfer; the rate of nuclear formation did not differ in the oocytes activated by the two different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号