首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased calcium influx in dystrophic muscle   总被引:16,自引:0,他引:16  
We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)-ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle.  相似文献   

2.
A lack of dystrophin results in muscle degeneration in Duchenne muscular dystrophy. Dystrophin-deficient human and mouse muscle cells have higher resting levels of intracellular free calcium ([Ca2+]i) and show a related increase in single-channel open probabilities of calcium leak channels. Elevated [Ca2+]i results in high levels of calcium-dependent proteolysis, which in turn increases calcium leak channel activity. This process could initiate muscle degeneration by further increasing [Ca2+]i and proteolysis in a positive feedback loop. Here, we tested the direct effect of restoration of dystrophin on [Ca2+]i and channel activity in primary myotubes from mdx mice made transgenic for full-length dystrophin. Transgenic mdx mice have been previously shown to have normal dystrophin localization and no muscle degeneration. Fura-2 calcium measurements and single-channel patch recordings showed that resting [Ca2+]i levels and open probabilities of calcium leak channels of transgenic mdx myotubes were similar to normal levels and significantly lower than mdx littermate controls (mdx) that lack dystrophin. Thus, restoration of normal calcium regulation in transgenic mdx mice may underlie the resulting absence of degeneration.  相似文献   

3.
Duchenne and mdx muscle tissues lack dystrophin where it normally interacts with glycoproteins in the sarcolemma. Intracellular free calcium ([Ca2+]i) is elevated in Duchenne and mdx myotubes and is correlated with abnormally active calcium-specific leak channels in dystrophic myotubes. We fused Duchenne human and normal mouse myoblasts and identified heterokaryon myotubes by Hoechst 33342 staining to measure the degree to which dystrophin introduced by normal nuclei could incorporate throughout the myotube at the sarcolemma and restore normal calcium homeostasis. Dystrophin expression in myotubes was determined by immunofluorescence and confocal laser scanning microscopy. Dystrophin was expressed at the sarcolemma in normal mouse and heterokaryon myotubes, but not in Duchenne myotubes. In heterokaryons, extensive dystrophin localization occurred at the sarcolemma even where only Duchenne nuclei were present, indicating that dystrophin does not exhibit nuclear domains. Heterokaryon, normal mouse and Duchenne myotube [Ca2+]i was measured using fura-2 and fluorescence ratio imaging. Heterokaryon and normal mouse myotubes were found to maintain similar levels of [Ca2+]i. In contrast, Duchenne myotubes had significantly higher [Ca2+]i (p < 0.001). Furthermore, the ability of heterokaryons to maintain normal [Ca2+]i did not depend on greater numbers of normal nuclei than Duchenne being present in the myotube. These results support the view that dystrophin expression in heterokaryons allows for efficient control of [Ca2+]i.  相似文献   

4.
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers.  相似文献   

5.
In skeletal muscle cells, plasma membrane depolarization causes a rapid calcium release from the sarcoplasmic reticulum through ryanodine receptors triggering contraction. In Duchenne muscular dystrophy (DMD), a lethal disease that is caused by the lack of the cytoskeletal protein dystrophin, the cytosolic calcium concentration is known to be increased, and this increase may lead to cell necrosis. Here, we used myotubes derived from control and mdx mice, the murine model of DMD, to study the calcium responses induced by nicotinic acetylcholine receptor stimulation. The photoprotein aequorin was expressed in the cytosol or targeted to the plasma membrane as a fusion protein with the synaptosome-associated protein SNAP-25, thus allowing calcium measurements in a restricted area localized just below the plasma membrane. The carbachol-induced calcium responses were 4.5 times bigger in dystrophic myotubes than in control myotubes. Moreover, in dystrophic myotubes the carbachol-mediated calcium responses measured in the subsarcolemmal area were at least 10 times bigger than in the bulk cytosol. The initial calcium responses were due to calcium influx into the cells followed by a fast refilling/release phase from the sarcoplasmic reticulum. In addition and unexpectedly, the inositol 1,4,5-trisphosphate receptor pathway was involved in these calcium signals only in the dystrophic myotubes. This surprising involvement of this calcium release channel in the excitation-contraction coupling could open new ways for understanding exercise-induced calcium increases and downstream muscle degeneration in mdx mice and, therefore, in DMD.  相似文献   

6.
Duchenne muscular dystrophy (DMD) is a lethal disease caused by the lack of the cytoskeletal protein dystrophin. Altered calcium homoeostasis and increased calcium concentrations in dystrophic fibres may be responsible for the degeneration of muscle occurring in DMD. In the present study, we used subsarcolemmal- and mitochondrial-targeted aequorin to study the effect of the antiapoptotic Bcl-2 protein overexpression on carbachol-induced near-plasma membrane and mitochondrial calcium responses in myotubes derived from control C57 and dystrophic (mdx) mice. We show that Bcl-2 overexpression decreases subsarcolemmal and mitochondrial calcium overload that occurs during activation of nicotinic acetylcholine receptors in dystrophic myotubes. Moreover, our results suggest that overexpressed Bcl-2 protein may prevent near-plasma membrane and mitochondrial calcium overload by inhibiting IP3Rs (inositol 1,4,5-trisphosphate receptors), which we have shown previously to be involved in abnormal calcium homoeostasis in dystrophic myotubes. Most likely as a consequence, the inhibition of IP3R function by Bcl-2 also inhibits calcium-dependent apoptosis in these cells.  相似文献   

7.
Previous studies have shown that calpains are autolytically cleaved during the disease process of mdx dystrophy, a mouse model for Duchenne muscular dystrophy, indicating that calpains may be activated and play a role in proteolysis that occurs in muscular dystrophy (J. Biol. Chem.270(18), 10909–10914, 1995). In the present study, we investigated the location of calpain in dystrophic muscle fibers over the course of mdx dystrophy, to relate the protease distribution to its state of activation, and to determine whether calpain translocation was an early event in mdx dystrophy. Immunolabeling of healthy, fully differentiated muscle fibers showed calpain present throughout the cytosol, but more concentrated near the plasma membrane. However, degenerating mdx fibers did not contain higher concentrations of calpain at the plasma membrane and showed only a homogeneous, cytosolic distribution. Calpain distribution was similarly diffuse in young myotubes and regenerating fibers with increased cytosolic concentration in early myotubes. Calpain distribution in adult mdx tissue was similar to that occurring in healthy, fully differentiated fibers, although adult mdx fibers displayed higher concentrations of membrane-associated calpain than those observed in C57 controls. The association of calpain with the plasma membrane was verified by immunoblots of isolated sarcolemmal membrane from adult mdx and control muscle which showed calpain present predominantly in the cytosol along with some membrane association. Thus, changes in calpain distribution coincide with changes in enzymatic cleavage over the course of mdx dystrophy shown previously. Furthermore, the stages of pathology at which calpain cleavage is least coincides with those stages when calpain is most concentrated at the cell membrane, suggesting that calpain is retained in an inactive form at the plasma membrane.  相似文献   

8.
Single-channel activity was recorded from cell-attached membrane patches on flexor digitorum brevis fibres acutely isolated from normal and mdx mice at different stages of postnatal development. Recordings from cell-attached patches on both normal and mdx fibres were dominated by the activity of mechanosensitive ion channels with a conductance of approximately 17 pS with 110 mM Ba2+ in the patch electrode. In a small fraction of the patches on mdx fibres from young mice, channels showed very high levels of activity. Channel activity recorded from mdx fibres from older mice was higher than in age-matched normal fibres and the level of activity decreased during development. Channel density decreased in normal fibres, whereas it remained relatively constant in mdx fibres, as if channels are down-regulated in normal, but not mdx, fibres during postnatal development. An early step in the dystrophic process may be an alteration of the mechanisms that regulate the expression of functional channels.  相似文献   

9.
10.
We describe a simple culture method for obtaining highly differentiated clonal C2C12 myotubes using a feeder layer of confluent fibroblasts, and document the expression of contractile protein expression and aspects of myofibre morphology using this system. Traditional culture methods using collagen- or laminin-coated tissue-culture plastic typically results in a cyclic pattern of detachment and reformation of myotubes, rarely producing myotubes of a mature adult phenotype. C2C12 co-culture on a fibroblast substratum facilitates the sustained culture of contractile myotubes, resulting in a mature sarcomeric register with evidence for peripherally migrating nuclei. Immunoblot analysis demonstrates that desmin, tropomyosin, sarcomeric actin, alpha-actinin-2 and slow myosin are detected throughout myogenic differentiation, whereas adult fast myosin heavy chain isoforms, members of the dystrophin-associated complex, and alpha-actinin-3 are not expressed at significant levels until >6 days of differentiation, coincident with the onset of contractile activity. Electrical stimulation of mature myotubes reveals typical and reproducible calcium transients, demonstrating functional maturation with respect to calcium handling proteins. Immunocytochemical staining demonstrates a well-defined sarcomeric register throughout the majority of myotubes (70-80%) and a striated staining pattern is observed for desmin, indicating alignment of the intermediate filament network with the sarcomeric register. We report that culture volume affects the fusion index and rate of sarcomeric development in developing myotubes and propose that a fibroblast feeder layer provides an elastic substratum to support contractile activity and likely secretes growth factors and extracellular matrix proteins that assist myotube development.  相似文献   

11.
Intracellular calcium levels play an important role in myofibril disintegration and regeneration of muscle fibers. Earlier studies have shown that the calcium activated protease, calpain, is involved in the removal of Z-discs from myofibrils of striated muscle and the tripeptide-aldehyde, leupeptin, which is an inhibitor of calpain, inhibits this activity. In the present communication, we demonstrate that leupeptin and another calpain inhibitor, E64d, inhibit the fusion of mouse skeletal muscle C2C12 myoblasts to form multinucleated myotubes in tissue culture.  相似文献   

12.
Intracellular calcium levels play an important role in myofibril disintegration and regeneration of muscle fibers. Earlier studies have shown that the calcium activated protease, calpain, is involved in the removal of Z-discs from myofibrils of striated muscle and the tripeptide-aldehyde, leupeptin, which is an inhibitor of calpain, inhibits this activity. In the present communication, we demonstrate that leupeptin and another calpain inhibitor, E64d, inhibit the fusion of mouse skeletal muscle C2C12 myoblasts to form multinucleated myotubes in tissue culture.  相似文献   

13.
Duchenne Muscular Dystrophy is a genetic disease caused by the lack of the protein dystrophin. Dystrophic muscles are highly susceptible to contraction-induced injury, and following contractile activity, have disrupted plasma membranes that allow leakage of calcium ions into muscle fibers. Because of the direct relationship between increased intracellular calcium concentration and muscle dysfunction, therapeutic outcomes may be achieved through the identification and restriction of calcium influx pathways. Our purpose was to determine the contribution of sarcolemmal lesions to the force deficits caused by contraction-induced injury in dystrophic skeletal muscles. Using isolated lumbrical muscles from dystrophic (mdx) mice, we demonstrate for the first time that poloxamer 188 (P188), a membrane-sealing poloxamer, is effective in reducing the force deficit in a whole mdx skeletal muscle. A reduction in force deficit was also observed in mdx muscles that were exposed to a calcium-free environment. These results, coupled with previous observations of calcium entry into mdx muscle fibers during a similar contraction protocol, support the interpretation that extracellular calcium enters through sarcolemmal lesions and contributes to the force deficit observed in mdx muscles. The results provide a basis for potential therapeutic strategies directed at membrane stabilization of dystrophin-deficient skeletal muscle fibers.  相似文献   

14.
15.
In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin is related to enhanced calcium influx and muscle degeneration. Stretch-activated channels (SACs) might be directly involved in the pathology of DMD, and transient receptor potential cation channels have been proposed as likely candidates of SACs. We investigated the levels of transient receptor potential canonical channel 1 (TRPC1) and the effects of streptomycin, a SAC blocker, in muscles showing different degrees of the dystrophic phenotype. Mdx mice (18 days old, n = 16) received daily intraperitoneal injections of streptomycin (182 mg/kg body wt) for 18 days, followed by removal of the diaphragm, sternomastoid (STN), biceps brachii, and tibialis anterior muscles. Control mdx mice (n = 37) were injected with saline. Western blot analysis showed higher levels of TRPC1 in diaphragm muscle compared with STN and limb muscles. Streptomycin reduced creatine kinase and prevented exercise-induced increases of total calcium and Evans blue dye uptake in diaphragm and in STN muscles. It is suggested that different levels of the stretch-activated calcium channel protein TRPC1 may contribute to the different degrees of the dystrophic phenotype seen in mdx mice. Early treatment designed to regulate the activity of these channels may ameliorate the progression of dystrophy in the most affected muscle, the diaphragm.  相似文献   

16.
The cytosolic Ca2+ -binding protein regucalcin is involved in intracellular signaling and present in high abundance in the liver. Here, we could show by comparative mass spectrometry-based proteomics screening of normal versus dystrophic fibres that regucalcin of 33.9 kDa and pI5.2 also exists in diaphragm muscle. Since the expression of sarcolemmal Ca2+ -leak channels and luminal Ca2+ -binding elements is altered in dystrophin-deficient muscle, we initiated this study in order to determine whether additional soluble muscle proteins involved in Ca2+ -handling are affected in muscular dystrophy. Following separation by two-dimensional gel electrophoresis, the spot pattern of the normal versus the mdx diaphragm muscle proteome was evaluated by densitometry. The expression levels of 20 major protein spots were shown to change and their identity determined by mass spectrometry. A 2-fold reduction of regucalcin in mdx diaphragm, as well as in dystrophic limb muscle and heart, was confirmed by immunoblotting in both young and aged mdx mice. The results from our proteomics analysis of dystrophic diaphragm support the concept that abnormal Ca2+ -handling is involved in x-linked muscular dystrophy. The reduction in key Ca2+ -handling proteins may result in an insufficient maintenance of Ca2+ -homeostasis and an abnormal regulation of Ca2+ -dependent enzymes resulting in disturbed intracellular signaling mechanisms in dystrophinopathies.  相似文献   

17.
Dystrophin is a cytoskeletal protein normally expressed underneath the sarcolemma of muscle fibers. The lack of dystrophin in Duchenne muscular Dystrophy (DMD) muscles results in fiber necrosis, which was proposed to be mediated by chronic calcium mishandling. The extensive comparison of dystrophic cells from human or mdx mice with normal muscles have suggested that the lack of dystrophin may alter the resting calcium permeability and steady-state levels of calcium, but this latter observation remains controversial. It is also not clear, whether calcium mishandling is resulting from the dystrophic process or if dystrophin can directly regulate calcium handling in muscle cells. This prompted us to determine if transfection of full-length dystrophin or Becker Muscular Dystrophy (BMD) minidystrophin, a candidate for viral-mediated gene therapy, could change calcium handling properties. We took advantage of specific properties of Sol8 cell line showing the absence of dystrophin expression together with a drastic calcium mishandling. Here, we show that full-length dystrophin allowed the recovery of a low resting intracellular-free calcium concentration together with lower calcium transients. We also show for the first time that stable expression of minidystrophin was able to restore normal calcium handling in Sol8 myotubes through a better control of steady-state levels, calcium transients, and subcellular calcium events. It suggests that dystrophin could play a regulatory role on calcium homeostasis apparatus and that functional links exist between calcium signaling and cytoskeleton.  相似文献   

18.
Han R  Grounds MD  Bakker AJ 《Cell calcium》2006,40(3):299-307
The hypothesis that intracellular Ca(2+) is elevated in dystrophic (mdx) skeletal muscle due to increased Ca(2+) influx is controversial. As the sub-sarcolemmal Ca(2+) ([Ca(2+)](mem)) should be even higher than the global cytosolic Ca(2+) in the presence of increased Ca(2+) influx, we investigated [Ca(2+)](mem) levels in collagenase-isolated adult flexor digitorum brevis (FDB) myofibres and myotubes of mdx and normal mice with the near-membrane Ca(2+) indicator FFP-18. Confocal imaging showed strong localization of FFP-18 to the sarcolemma only. No significant difference in [Ca(2+)](mem) was found in FDB myofibres of normal (77.3+/-3.8 nM, n=68) and mdx (79.3+/-5.6 nM, n=21, p=0.89) mice using FFP-18. Increasing external Ca(2+) to 18 mM did not significantly affect [Ca(2+)](mem) in either the normal or mdx myofibres. In the myotubes, the FFP-18 was non-selectively incorporated, distributing throughout the cytoplasm, and FFP-18-derived [Ca(2+)] values were similar to values obtained with Fura-2. Nevertheless, in the mdx myotubes, the [Ca(2+)] measured with FFP-18 increased linearly to a level approximately 2.75 times that of controls as the time of culture was prolonged. In older mdx myotubes (>or=8 days in culture), 18 mM extracellular Ca(2+) increased the steady state cytosolic [Ca(2+)] to approximately 22 times greater level than controls. This study suggests that the sub-sarcolemmal Ca(2+) homeostasis is well maintained in isolated adult mdx myofibers and also further supports the hypothesis that cytosolic Ca(2+) handling is compromised in mdx myotubes.  相似文献   

19.
Calpain and calpastatin levels in dystrophic hamster skeletal muscles   总被引:1,自引:0,他引:1  
1. Two fast-twitch skeletal muscles from normal and dystrophic hamsters were analysed for their calpain and calpastatin contents. 2. Assays of wide-specificity calpain II showed that the activity levels in the two muscles were increased 1.5 and 1.6 times in dystrophic animals. 3. Analysis of calpastatin levels showed that the respective dystrophic muscles had activity levels of 2.2 and 2.8 times those of control muscles. 4. These results contrast with previous studies on denervated hamster muscles which showed that denervation causes an increase in calpain levels but a decrease in calpastatin levels.  相似文献   

20.
Elevation of intracellular Ca2+, excessive ROS production and increased phospholipase A2 activity contribute to the pathology in dystrophin-deficient muscle. Moreover, Ca2+, ROS and phospholipase A2, in particular iPLA2, are thought to potentiate each other in positive feedback loops. NADPH oxidases (NOX) have been considered as a major source of ROS in muscle and have been reported to be overexpressed in muscles of mdx mice. We report here on our investigations regarding the effect of diapocynin, a dimer of the commonly used NOX inhibitor apocynin, on the activity of iPLA2, Ca2+ handling and ROS generation in dystrophic myotubes. We also examined the effects of diapocynin on force production and recovery ability of isolated EDL muscles exposed to eccentric contractions in vitro, a damaging procedure to which dystrophic muscle is extremely sensitive. In dystrophic myotubes, diapocynin inhibited ROS production, abolished iPLA2 activity and reduced Ca2+ influx through stretch-activated and store-operated channels, two major pathways responsible for excessive Ca2+ entry in dystrophic muscle. Diapocynin also prevented force loss induced by eccentric contractions of mdx muscle close to the value of wild-type muscle and reduced membrane damage as seen by Procion orange dye uptake. These findings support the central role played by NOX-ROS in the pathogenic cascade leading to muscular dystrophy and suggest diapocynin as an effective NOX inhibitor that might be helpful for future therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号