首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interaction of caldesmon with the COOH terminus of actin   总被引:1,自引:0,他引:1  
Caldesmon interacts with the NH2-terminal region of actin. It is now shown in airfuge centrifugation experiments that modification of the penultimate cysteine residue of actin significantly weakens its binding to caldesmon both in the presence and absence of tropomyosin. Furthermore, as revealed by fluorescence measurements, caldesmon increases the exposure of the COOH-terminal region of actin to the solvent. This effect of caldesmon, like its inhibitory effect on actomyosin ATPase activity, is enhanced in the presence of tropomyosin. Proteolytic removal of the last three COOH-terminal residues of actin, containing the modified cysteine residue, restores the normal binding between caldesmon and actin. These results establish a correlation between the binding of caldesmon to actin and the conformation of the COOH-terminal region of actin and suggest an indirect rather than direct interaction between caldesmon and this part of actin.  相似文献   

2.
Caldesmon is a component of smooth muscle thin filaments that inhibits the actomyosin ATPase via its interaction with actin-tropomyosin. We have performed a comprehensive transient kinetic characterization of the actomyosin ATPase in the presence of smooth muscle caldesmon and tropomyosin. At physiological ratios of caldesmon to actin (1 caldesmon/7 actin monomers) actomyosin ATPase is inhibited by about 75%. Inhibitory caldesmon concentrations had little effect upon the rate of S1 binding to actin, actin-S1 dissociation by ATP, and dissociation of ADP from actin-S1 x ADP; however the rate of phosphate release from the actin-S1 x ADP x P(i) complex was decreased by more than 80%. In addition the transient of phosphate release displayed a lag of up to 200 ms. The presence of a lag phase indicates that a step on the pathway prior to phosphate release has become rate-limiting. Premixing the actin-tropomyosin filaments with myosin heads resulted in the disappearance of the lag phase. We conclude that caldesmon inhibition of the rate of phosphate release is caused by the thin filament being switched by caldesmon to an inactive state. The active and inactive states correspond to the open and closed states observed in skeletal muscle thin filaments with no evidence for the existence of a third, blocked state. Taken together these data suggest that at physiological concentrations, caldesmon controls the isomerization of the weak binding complex to the strong binding complex, and this causes the inhibition of the rate of phosphate release. This inhibition is sufficient to account for the inhibition of the steady state actomyosin ATPase by caldesmon and tropomyosin.  相似文献   

3.
Caldesmon binds equally to both gizzard actin and actin containing stoichiometric amounts of bound tropomyosin. The binding of caldesmon to actin inhibits the actin-activation of the Mg-ATPase activity of phosphorylated myosin only when the actin contains bound tropomyosin. The reversal of this inhibition requires Ca2+-calmodulin; but it occurs without complete release of bound caldesmon. Although phosphorylation of the caldesmon occurs during the ATPase assay, a direct correlation between caldesmon phosphorylation and the release of the inhibited actomyosin ATPase is not consistently observed.  相似文献   

4.
Tropomyosin and caldesomon reciprocally control the actomyosin system in smooth muscle and some non-muscle cells. To compare this mechanism between arterial smooth muscle and platelets, we carried out extensive exchange experiments. Actin, myosin, tropomyosin from arterial smooth muscle cells and platelets were recombined and the effects of two species of caldesmon ('caldesmon77' and 'caldesmon140') on the ATPase activities of both systems were examined and analyzed by the method of analysis of variance. (a) The actomyosin system itself is different between artery and platelets, the difference being determined by myosin (P less than 0.05) and not by actin. (b) Platelet tropomyosin differentiates platelet actin from arterial actin (P less than 0.01), while arterial tropomyosin does not. Neither does tropomyosin differentiate myosin. (c) The effect of caldesmon77 differentiates the origins of myosin (P less than 0.01), actin (P less than 0.05) and tropomyosin (P less than 0.05). The effect of caldesmon140 differentiates the origin of myosin (P less than 0.05) and the actin-myosin 'interaction' (combination) (P less than 0.01), but not the origin of tropomyosin (P greater than 0.1). (1) It is concluded that actomyosin/tropomyosin-caldesmon system is distinguishable between platelets and artery. (2) It is suggested that caldesmon is an actomyosin inhibitor which may interact with myosin, in addition to actin and tropomyosin.  相似文献   

5.
Caldesmon inhibits actomyosin ATPase and filament sliding in vitro, and therefore may play a role in modulating smooth and non-muscle motile activities. A bacterially expressed caldesmon fragment, 606C, which consists of the C-terminal 150 amino acids of the intact molecule, possesses the same inhibitory properties as full-length caldesmon and was used in our structural studies to examine caldesmon function. Three-dimensional image reconstruction was carried out from electron micrographs of negatively stained, reconstituted thin filaments consisting of actin and smooth muscle tropomyosin both with and without added 606C. Helically arranged actin monomers and tropomyosin strands were observed in both cases. In the absence of 606C, tropomyosin adopted a position on the inner edge of the outer domain of actin monomers, with an apparent connection to sub-domain 1 of actin. In 606C-containing filaments that inhibited acto-HMM ATPase activity, tropomyosin was found in a different position, in association with the inner domain of actin, away from the majority of strong myosin binding sites. The effect of caldesmon on tropomyosin position therefore differs from that of troponin on skeletal muscle filaments, implying that caldesmon and troponin act by different structural mechanisms.  相似文献   

6.
Orientation and mobility of acrylodan fluorescent probe specifically bound to caldesmon Cys580 incorporated into muscle ghost fibers decorated with myosin S1 and containing tropomyosin was studied in the presence or absence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. Modeling of various intermediate states of actomyosin has shown discrete changes in orientation and mobility of the dye dipoles which is the evidence for multistep changes in the structural changes of caldesmon during the ATPase hydrolysis cycle. It is suggested that S1 interaction with actin results in nucleotide-dependent displacement of the C-terminal part of caldesmon molecule and changes in its mobility. Thus inhibition of the actomyosin ATPase activity may be due to changes in caldesmon position on the thin filament and its interaction with actin. Our new findings described in the present paper as well as those published recently elsewhere might conciliate the two existing models of molecular mechanism of inhibition of the actomyosin ATPase by caldesmon.  相似文献   

7.
Chicken gizzard caldesmon causes up to 40% inhibition of Mg2+-ATPase activity of rabbit skeletal muscle actomyosin. In the presence of chicken gizzard tropomyosin this inhibition is significantly increased, reaching a maximum (around 80%) at a molar ratio of caldesmon to actin monomer of 1 to 10-13. The inhibition of actomyosin ATPase takes place over a wide pH range (from 6.0 to 8.0) but is decreased with an increase in KCl and MgCl2 concentrations. Caldesmon, in the range of caldesmon/ actin ratios within which it inhibits actomyosin ATPase, forms bundles of parallelly aligned actin filaments. Calmodulin in the presence of Ca2+ dissociates these bundles and restrains the inhibition of actomyosin ATPase, provided that it is used at a high molar excess over caldesmon.  相似文献   

8.
Caldesmon, an actin/calmodulin binding protein, inhibits acto-heavy meromyosin (HMM) ATPase, while it increases the binding of HMM to actin, presumably mediated through an interaction between the myosin subfragment 2 region of HMM and caldesmon, which is bound to actin. In order to study the mechanism for the inhibition of acto-HM ATPase, we utilized the chymotryptic fragment of caldesmon (38-kDa fragment), which possesses the actin/calmodulin binding region but lacks the myosin binding portion. The 38-kDa fragment inhibits the actin-activated HMM ATPase to the same extent as does the intact caldesmon molecule. In the absence of tropomyosin, the 38-kDa fragment decreased the KATPase and Kbinding without any effect on the Vmax. However, when the actin filament contained bound tropomyosin, the caldesmon fragment caused a 2-3-fold decrease in the Vmax, in addition to lowering the KATPase and the Kbinding. The 38-kDa fragment-induced inhibition is partially reversed by calmodulin at a 10:1 molar ratio to caldesmon fragment; the reversal was more remarkable in 100 mM ionic strength at 37 degrees C than in 20 or 50 mM at 25 degrees C. Results from these experiments demonstrate that the 38-kDa domain of caldesmon fragment of myosin head to actin; however, when the actin filament contains bound tropomyosin, caldesmon fragment affects not only the binding of HMM to/actin but also the catalytic step in the ATPase cycle. The interaction between the 38-kDa domain of caldesmon and tropomyosin-actin is likely to play a role in the regulation of actomyosin ATPase and contraction in smooth muscle.  相似文献   

9.
It is known that the actin-binding protein caldesmon inhibits actomyosin ATPase activity and might in this way take part in the thin filament regulation of smooth muscle contraction. Although the molecular mechanism of this inhibition is unknown, it is clear that the presence of actin-bound tropomyosin is necessary for full inhibition. Recent evidence also suggests that the myosin-induced movement of tropomyosin plays a key role in regulation. In this work, fluorescence studies provide evidence to show that caldesmon interacts with and alters the position of tropomyosin in a reconstituted actin thin filament and thereby limits the ability of myosin heads to move tropomyosin. Caldesmon interacts with the Cys-190 region in the COOH-terminal half of tropomyosin, resulting in the movement of this part of tropomyosin to a new position on actin. Additionally, this constrains the myosin-induced movement of this region of tropomyosin. On the other hand, caldesmon does not appear to interact with the Cys-36 region in the NH2-terminal half of tropomyosin and neither alters the position of nor significantly constrains the myosin-induced movement of this part of tropomyosin. The ability of caldesmon to limit the myosin-induced movement of tropomyosin provides a possible molecular basis for the inhibitory function of caldesmon. The different movements of the two halves of tropomyosin indicate that actin-bound tropomyosin moves as a flexible molecule and not as a rigid rod. Interestingly, caldesmon, which inhibits tropomyosin's potentiation of actomyosin ATPase activity, moves tropomyosin in one direction, whereas myosin heads, which enhance potentiation, move tropomyosin in the opposite direction.  相似文献   

10.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

12.
The effects of ethanol at concentrations below 10% on the conformation of tropomyosin, its end-to-end polymerization, its binding to F-actin, and its effects on actomyosin ATPase activity were studied. Ethanol stabilized the tropomyosin conformation by shifting the helix thermal unfolding profile to higher temperatures, and increased the end-to-end polymerization of tropomyosin. Ethanol-induced changes in the excimer fluorescence of pyrene-tropomyosin indicated that its conformation was stabilized by ethanol both free and bound to F-actin. Effects of tropomyosin and tropomyosin-troponin on actomyosin ATPase activity were measured under conditions for which tropomyosin binding to F-actin increases the activity. Under conditions for which the binding of tropomyosin to F-actin is optimum, in the presence of tropomyosin, the actomyosin ATPase activity decreased as the ethanol concentration increased, further indicating that ethanol induces a structural change in the tropomyosin-F-actin complex. Under conditions for which the binding of tropomyosin to F-actin is weak (low salt or high temperature), addition of ethanol increased the ATPase activity due to increased binding of tropomyosin to F-actin. Thus, ethanol appears to modify actomyosin ATPase activity by increasing the binding of tropomyosin to F-actin and affecting the structure of tropomyosin in the tropomyosin-F-actin filament.  相似文献   

13.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

14.
A 20-residue peptide analog of the actomyosin ATPase inhibitory region of rabbit skeletal troponin I (Tn-I) has been synthesized by the solid phase method. The analog exhibited biological activity similar to both Tn-I and a 21-residue cyanogen bromide fragment of Tn-I. At ionic strengths where the inhibition of the actomyosin ATPase due to tropomyosin alone is low, the synthetic peptide in the presence of tropomyosin inhibits 90% of the original ATPase activity. In the absence of tropomyosin, the inhibition due to the peptide is much reduced. In contrast, salmine, a basic protein also known to inhibit the actomyosin ATPase, shows less inhibition in the presence of tropomyosin than it does in its absence. Gel electrophoresis data showed that the enhancement of the analog's inhibition by tropomyosin may be related to the analog's promotion of tropomyosin binding to F-actin similar to that reported for Tn-I and that the reduction of salmine inhibition by tropomyosin may be due to the binding of salmine by tropomyosin. At ionic strengths where binding and inhibition of tropomyosin is significant, the analog enhanced inhibition in a manner similar to that reported for whole Tn-I.  相似文献   

15.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

16.
A pair of 10-kDa peptides, designated CB-a and CB-b, was isolated by calmodulin-Sepharose chromatography from a total CNBr digest of turkey gizzard caldesmon. CB-a encompasses the COOH-terminal segment of residues 659-756, according to the sequence of adult chicken gizzard caldesmon (Bryan, J., Imai, M., Lee, R., Moore, P., Cook, R.G., and Lin, W.G. (1989) J. Biol. Chem. 264, 13873-13879), whereas CB-b comprises the same structure but was a few amino acids shorter at its COOH terminus. Both peptides cosedimented with F-actin, and their binding was increased by smooth muscle tropomyosin. The Kd values were 1.3 and 0.5 microM, in the absence and presence of tropomyosin, respectively, with a maximum binding capacity of 6.9 actins/mol of peptides. The CB-a/CB-b fragments inhibited, in a tropomyosin-sensitive and Ca2(+)-calmodulin-dependent manner, the skeletal actomyosin subfragment 1 ATPase activity to a level close but not identical to that observed for the parent caldesmon. Ca2(+)-calmodulin was selectively cross-linked to either caldesmon or the CNBr peptides with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide producing 1:1 covalent complexes that were retained neither by phenyl-Sepharose nor by immobilized calmodulin. Moreover, the cross-linked caldesmon bound weakly to F-actin and did not inhibit the actomyosin subfragment 1 ATPase in the absence of Ca2+. The results suggest that the CB-a/CB-b peptide region contains major regulatory determinants of caldesmon.  相似文献   

17.
Effects of gelsolin on the actomyosin system in platelet have been studied. MgATPase activity of platelet actomyosin is enhanced up to two folds by 200 nM of platelet gelsolin in the presence, but not in the absence of Ca ion. The half maximum enhancement is observed at the concentration of Ca2+ around 10(-5) M. The effect of gelsolin to enhance the ATPase activity of actomyosin is potentiated by tropomyosin, which is a Ca2+-insensitive actomyosin enhancer. The results indicate that gelsolin may control the activity of actomyosin system in platelets.  相似文献   

18.
K Y Horiuchi  S Chacko 《Biochemistry》1989,28(23):9111-9116
The 38-kDa chymotryptic fragment of caldesmon, which possesses the actin/calmodulin binding domain, was purified and utilized to study the mechanism for the inhibition of acto-myosin ATPase by caldesmon. The intact caldesmon inhibited the acto-HMM ATPase although it caused an increase in the binding of HMM to actin, presumably due to the interaction between the S-2 region of HMM and the caldesmon located on the actin filament. The 38-kDa fragment, which lacks the S-2 binding domain, inhibited both the acto-HMM ATPase and the HMM binding to actin. The ATPase and the HMM binding to actin decreased in parallel on increasing the 38-kDa fragment bound to actin. In the presence of tropomyosin, the ATPase activity fell more rapidly than did the HMM binding to actin. Binding of intact caldesmon or 38-kDa fragment to actin inhibited the cooperative turning-on of tropomyosin-actin by NEM.S-1, which forms rigor complexes in the presence of ATP. The absence of cooperative turning-on of the acto-HMM ATPase by rigor complexes in the presence of 38-kDa fragment was associated with an inhibition of the binding of HMM to tropomyosin-actin. Addition of NEM.S-1 to tropomyosin-actin-caldesmon caused a gradual decrease in the caldesmon-induced binding of HMM to actin. The calmodulin restored the caldesmon-induced binding of HMM to tropomyosin-actin, but it had only a slight effect on the acto-HMM ATPase. These data suggest that the cooperative turning-on of the smooth muscle tropomyosin-actin by rigor bonds is modulated by the interaction of caldesmon, tropomyosin, and calmodulin on the thin filament.  相似文献   

19.
Caldesmon, a major calmodulin- and actin-binding protein of smooth muscle (Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 5652-5655), has been obtained in highly purified form from chicken gizzard by a modification of a previously published procedure (Ngai, P. K., Carruthers, C. A., and Walsh, M. P. (1984) Biochem. J. 218, 863-870) and was found to cause a significant inhibition of both superprecipitation and actin-activated myosin Mg2+-ATPase activity in a system reconstituted from the purified contractile and regulatory proteins without influencing the phosphorylation state of myosin. This inhibitory effect was seen both in the presence and absence of tropomyosin. A Ca2+-and calmodulin-dependent kinase which catalyzed phosphorylation of caldesmon was identified in chicken gizzard; this kinase is distinct from myosin light-chain kinase. Caldesmon prepared by calmodulin-Sepharose affinity chromatography was contaminated with caldesmon kinase activity and was unable to inhibit actomyosin ATPase activity or superprecipitation. Phosphatase activity capable of dephosphorylating caldesmon was also identified in smooth muscle. These results indicate that caldesmon can inhibit smooth muscle actomyosin ATPase activity in vitro, and this function may itself be subject to regulation by reversible phosphorylation of caldesmon.  相似文献   

20.
Digestion of caldesmon with carboxypeptidase Y is accompanied by loss of its ability to inhibit actomyosin ATPase activity and to bind actin and calmodulin. Similarly, carboxypeptidase Y digestion of a terminal 40 kDa chymotryptic fragment of caldesmon abolishes its inhibition of the actomyosin ATPase and binding to actin and calmodulin. This represents the first direct demonstration that these functional domains of caldesmon are located close to the carboxy-terminus of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号