首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have obtained biochemical and electron microscopic evidence of conformational changes at pH 8.0 and 37 degrees C in the coronavirus spike glycoprotein E2 (S). The importance of these changes is reflected in the loss of virus infectivity, the aggregation of virions, and increased virus-induced cell fusion at the same pH. Coronavirus (MHV-A59) infectivity is exquisitely sensitive to pH. The virus was quite stable at pH 6.0 and 37 degrees C (half-life, approximately 24 h) but was rapidly and irreversibly inactivated by brief treatment at pH 8.0 and 37 degrees C (half-life, approximately 30 min). Virions treated at pH 8.0 and 37 degrees C formed clumps and large aggregates. With virions treated at pH 8.0 and 37 degrees C, the amino-terminal peptide E2N (or S1) was released from virions and the remaining peptide, E2C (S2), was aggregated. Viral spikes isolated from detergent-treated virions also aggregated at pH 8.0 and 37 degrees C. Loss of virus infectivity and E2 (S) aggregation at pH 8.0 and 37 degrees C were markedly enhanced in the presence of dithiothreitol. On the basis of the effects of dithiothreitol on the reactions of the peplomer, we propose that release of E2N (S1) and aggregation of E2C (S2) may be triggered by rearrangement of intramolecular disulfide bonds. The aggregation of virions and the isolated E2 (S) glycoprotein at pH 8.0 and 37 degrees C or following treatment with guanidine and urea at pH 6.0 and 37 degrees C indicate that an irreversible conformational change has been induced in the peplomer glycoprotein by these conditions. It is interesting that coronavirus-induced cell fusion also occurred under mildly alkaline conditions and at 37 degrees C. Some enveloped viruses, including influenza viruses and alphaviruses, show conformational changes of spike glycoproteins at a low pH, which correlates with fusion and penetration of those viruses in acidified endocytic vesicles. For coronavirus MHV-A59, comparable conformational change of the spike glycoprotein E2 (S) and cell fusion occurred at a mildly alkaline condition, suggesting that coronavirus infection-penetration, like that of paramyxoviruses and lentiviruses, may occur at the plasma membrane, rather than within endocytic vesicles.  相似文献   

2.
The rotavirus spike protein, VP4, is a major determinant of infectivity and neutralization. Previously, we have shown that trypsin-enhanced infectivity of rotavirus involves a transformation of the VP4 spike from a flexible to a rigid bilobed structure. Here we show that at elevated pH the spike undergoes a drastic, irreversible conformational change and becomes stunted, with a pronounced trilobed appearance. These particles with altered spikes, at a normal pH of 7.5, despite the loss of infectivity and the ability to hemagglutinate, surprisingly exhibit sialic acid (SA)-independent cell binding in contrast to the SA-dependent cell binding exhibited by native virions. Remarkably, a neutralizing monoclonal antibody that remains bound to spikes throughout the pH changes (pH 7 to 11 and back to pH 7) completely prevents this conformational change, preserving the SA-dependent cell binding and hemagglutinating functions of the virion. A hypothesis that emerges from the present study is that high-pH treatment triggers a conformational change that mimics a post-SA-attachment step to expose an epitope recognized by a downstream receptor in the rotavirus cell entry process. This process involves sequential interactions with multiple receptors, and the mechanism by which the antibody neutralizes is by preventing this conformational change.  相似文献   

3.
The combined effects of ionic strength, divalent cations, pH and toxin concentration on the pore-forming activity of Cry1Ac and Cry1Ca were studied using membrane potential measurements in isolated midguts of Manduca sexta and a brush border membrane vesicle osmotic swelling assay. The effects of ionic strength and divalent cations were more pronounced at pH 10.5 than at pH 7.5. At the higher pH, lowering ionic strength in isolated midguts enhanced Cry1Ac activity but decreased considerably that of Cry1Ca. In vesicles, Cry1Ac had a stronger pore-forming ability than Cry1Ca at a relatively low ionic strength. Increasing ionic strength, however, decreased the rate of pore formation of Cry1Ac relative to that of Cry1Ca. The activity of Cry1Ca, which was small at the higher pH, was greatly increased by adding calcium or by increasing ionic strength. EDTA inhibited Cry1Ac activity at pH 10.5, but not at pH 7.5, indicating that trace amounts of divalent cations are necessary for Cry1Ac activity at the higher pH. These results, which clearly demonstrate a strong effect of ionic strength, divalent cations and pH on the pore-forming activity of Cry1Ac and Cry1Ca, stress the importance of electrostatic interactions in the mechanism of pore formation by B. thuringiensis toxins.  相似文献   

4.
At least three nuclease activities are associated with purified frog virus 3. These activities are endodeoxyribonuclease (pH 7.5, double-stranded [DS] and single-stranded [SS] deoxyribonucleic acid [DNA]); endodeoxyribonuclease (pH 5.0, DS and SS DNA); endoribonuclease (DS and SS ribonucleic acid [RNA], pH 7.5). These activities are not adsorbed to the surface of the virion but are within the viral capsid and require detergent disruption of virions to unmask enzyme activity. Only one activity, deoxyribonuclease (pH 5.0, SS and DS DNA) appears to be core-associated after detergent disruption of virions. The ribonuclease degrades poliovirus replicative-form RNA, reovirus native RNA, and poly(I) poly(C) to a product with a sedimentation coefficient of about 6S. Qbeta 6S DS RNA and 4S transfer RNA are not degraded. The ribonuclease appears to be a late function of the virus and is elicited in a soluble form as well as a virus-associated form.  相似文献   

5.
Metal ion-activated acid ATPase was present in chicken liver lysosomes. The enzyme catalyzed the hydrolysis of nucleoside tri-, di-, and monophosphates and cleaved the phosphodiester linkage. Among the substrates studied, ATP was hydrolyzed at the highest rate at pH 5.4. The enzyme activity was stimulated 3.5 approximately 7.5-fold by divalent cations such as Ca2+, Mg2+, and Zn2+, but inhibited by EDTA or Hg2+.  相似文献   

6.
Murine monoclonal antibodies (mAbs) to lucerne transient streak sobemovirus (LTSV) were used as probes for examining the virion capsid organization. A panel of nine mAbs from approximately 100 hybridomas were chosen for this study. All of these mAbs interacted effectively with sites on intact capsid and isolated coat protein sub-units (i.e. metatopes) in ELISA and Western blots. Only one of these mAbs reacted with virions in gel diffusion test producing a visible precipitin band. Competitive binding assays showed that these mAbs recognized the same or very similar metatopes. None of the mAbs neutralized LTSV virion infectivity but rabbit polyclonal antibodies drastically reduced infectivity. Treatment of virions with EDTA (swollen LTSV). protein crosslinking reagents or sodium dodecyl sulphate caused no detectable alterations in their reactivities with these mAbs, The binding sites for monoclonal and polyclonal antibodies were located on denatured 5.5 kDa fragments resulting from partial trypsinization of LTSV coat protein and 8 kDa fragments formed with chymopapain proteolysis. These results indicate that these LTSV epitopes are of linear (or sequential) configuration and are located on the exposed, structurally stable domain of the virion capsid.  相似文献   

7.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

8.
The stability of bromegrass mosaic virus (BMV) and empty shells reassembled in vitro from purified BMV coat protein was investigated under hydrostatic pressure, using solution small-angle neutron scattering. This technique allowed us to monitor directly the dissociation of the particles, and to detect conformational changes preceding dissociation. Significant dissociation rates were observed only if virions swelled upon increase of pressure, and pressure effects became irreversible at very high-pressure in such conditions. At pH 5.0, in buffers containing 0.5 M NaCl and 5 mM MgCl(2), BMV remained compact (radius 12.9 nm), dissociation was limited to approximately 10 % at 200 MPa, and pressure effects were totally reversible. At pH 5.9, BMV particles were slightly swollen under normal pressure and swelling increased with pressure. The dissociation was reversible to 90 % for pressures up to 160 MPa, where its rate reached 28 %, but became totally irreversible at 200 MPa. Pressure-induced swelling and dissociation increased further at pH 7.3, but were essentially irreversible. The presence of (2)H(2)O in the buffer strongly stabilized BMV against pressure effects at pH 5.9, but not at pH 7.3. Furthermore, the reversible changes of the scattered intensity observed at pH 5.0 and 5.9 provide evidence that pressure could induce the release of coat protein subunits, or small aggregates of these subunits from the virions, and that the dissociated components reassociated again upon return to low pressure. Empty shells were stable at pH 5.0, at pressures up to 260 MPa. They became ill-shaped at high-pressure, however, and precipitated slowly after return to normal conditions, providing the first example of a pressure-induced conformational drift in an assembled system.  相似文献   

9.
The effects of increasing concentrations of magnesium (Mg2+), calcium (Ca2+) or EDTA, and pH on the adhesion of five slime-positive strains of Staphylococcus epidermidis (Se+) to plastic were examined using an in vitro microwell assay. The addition of Mg2+ (as either MgSO4 or MgCl2) to the bacterial suspension in concentrations as low as 16 microM significantly enhanced the adhesion of all test strains to plastic (P < 0.001). Similarly, the addition of Ca2+ (as CaCl2) in concentrations exceeding 128 microM produced a significant increase in the adhesion of all test strains, but not to the extent observed with Mg2+. In contrast, the adhesion of all test strains to plastic was significantly reduced in the presence of EDTA at concentrations greater than 8 mM. However, EDTA in concentrations as low as 0.25 mM caused a significant decrease in the adhesion of two strains of Se+. The effect of pH was variable, but at a pH of 5.0 and 6.0, the adhesion of all test strains was significantly reduced compared to control values at a pH of 7.0. Two strains showed a significant increase in adhesion at a pH of 8.0. We also compared the effects of these variables on the adherence of a slime-negative phase variant derived from a slime-positive parent strain. With the exception of pH, the adhesion of both strains in response to increasing divalent cations or EDTA was similar. These data indicate that, in addition to hydrophobic interactions, ligand-specific binding, and slime production, pH and divalent cations, especially Mg2+, are important determinants of the adhesion of S. epidermidis to plastic surfaces in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The platelet membrane glycoproteins IIb and IIIa normally exist as a complex which forms a predominant immunoprecipitate after crossed immunoelectrophoresis of Triton-X-100-solubilized platelets. Dissociation of the complex occurs by solubilization in the presence of EDTA or EGTA at pH 8.7 and is readily verified by crossed immunoelectrophoresis. Incubations of isolated membranes with EDTA or EGTA at various pH levels were performed. Removal of the chelators and solubilization showed no dissociation of the glycoprotein IIb-IIIa complex in membranes incubated at pH below 8.0. At pH above 8.0 a dissociation which increased with increasing pH was seen. Under these conditions, dissociation appears to take place already in the intact membranes. The tendency of the glycoprotein IIb-IIIa complex to become dissociated with EDTA or EGTA at increasing pH seems to be due to increased chelating capacity of the chelators concomitant with a decreased chelating capacity of glycoprotein IIb and IIIa. The divalent cations Ca2+ and Mg2+, but not Cu2+, Zn2+, Mn2+ or Sr2+, in molar concentrations below that of EGTA were able to prevent the dissociation of the glycoprotein IIb-IIIa complex by the chelator at pH 9.0, indicating that Ca2+ as well as Mg2+ can be used to keep the complex together. In some experiments it was possible to reverse the dissociation in the membranes after removal of EDTA. At pH 7.5 reassociation occurred within 15 min whether divalent cations were added or not. At pH 9.0. reassociation occurred within 2 h provided Ca2+ was present. The tendency of glycoprotein IIb and IIIa to form a complex thus appeared to be most pronounced over the physiological pH range and to be a rapid process in platelet membranes under such conditions.  相似文献   

11.
In this report we address two questions regarding the regulationof phosphorylated nitrate reductase (pNR; EC 1.6.6.1 [EC] ) by 14-3-3proteins. The first concerns the requirement for millimolarconcentrations of a divalent cation in order to form the inactivepNR: 14-3-3 complex at pH 7.5. The second concerns the reducedrequirement for divalent cations at pH 6.5. In answering thesequestions we highlight a possible general mechanism involvedin the regulation of 14-3-3 binding to target proteins. We showthat divalent cations (e.g. Ca2+, Mg2+ and Mn2+) bind directlyto 14-3-3s, and as a result cause a conformational change, manifestedas an increase in surface hydrophobicity. A similar change isalso obtained by decreasing the pH from pH 7.5 to pH 6.5, inthe absence of divalent cations, and we propose that protonationof amino acid residues brings about a similar effect to metalion binding. A possible regulatory mechanism, where the 14-3-3protein has to be "primed" prior to binding a target protein,is discussed. 1Co-operative investigations of the U.S. Department of Agriculture,Agricultural Research Service, and the North Carolina AgriculturalResearch Service, Raleigh, NC. This work was supported by agrant from the U.S. Department of Agriculture-National ResearchInitiative (Grant 93-37305-9231 to JLH and SCH). Mention ofa trademark or proprietary product does not constitute a guaranteeor warranty of the product by the USDA or the North CarolinaAgricultural Service. Nor does it imply its approval to theexclusion of other products that might also be suitable.  相似文献   

12.
J Edwards  E Mann    D T Brown 《Journal of virology》1983,45(3):1090-1097
The attachment of high multiplicities of Sindbis virus to tissue-cultured cells followed by brief treatment at low pH has been shown to produce cell fusion (fusion from without). In this report, experiments to determine the effects of low pH on the physical and biological properties of Sindbis virus are described. Exposure of purified Sindbis virions to mildly acidic conditions resulted in a rapid and irreversible alteration in particle density and sedimentation characteristics, followed by a slower loss of infectivity. Infectivity was not restored by a return to neutral pH; rather, the loss of virus infectivity seemed to be initiated by exposure to low pH but continued at neutral pH. The formation of a virus-cell complex in which virions were attached to the cell surface protected the particles from low-pH inactivation, although low pH could still expose virus functions responsible for cell fusion. Low pH was found to induce a conformational change in the E2 polypeptide of the intact virion. These results are discussed with respect to the process of Sindbis virus infection of tissue-cultured cells.  相似文献   

13.
Olspert A  Arike L  Peil L  Truve E 《FEBS letters》2011,585(19):2979-2985
Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.  相似文献   

14.
Electron microscopy of denatured RNA of southern bean mosaic virus (SBMV) shows two principal linear components, 0.31 ± 0.08 μm (subgenomic RNAs, MW 0.51 × 106) and 0.80 ± 0.17 μm (genomic RNA, MW 1.3 × 106 25S). Nondenatured RNA (~ 32S) from heat-inactivated virions measure 1.0 ± 0.20 μm (MW 1.64 × 106) but is poorly-infectious. Upon denaturation the 325 RNA disaggregates into components of lengths typical of the genomic and subgenornic RNAs and infectivity is restored.  相似文献   

15.
O Nussbaum  A Loyter 《FEBS letters》1987,221(1):61-67
Incubation of fluorescently labeled influenza virus particles with living cultured cells such as lymphoma S-49 cells or hepatoma tissue culture cells resulted in a relatively high degree of fluorescence dequenching. Increase in the degree of fluorescence (35-40% fluorescence dequenching) was observed following incubation at pH 5.0 as well as at pH 7.4. On the other hand, incubation of fluorescently labeled influenza virions with erythrocyte ghosts resulted in fluorescence dequenching only upon incubation at pH 5.0. Only a low degree of fluorescence dequenching was observed upon incubation with inactivated unfusogenic influenza or with hemagglutinino-influenza virions. The results of the present work clearly suggest that the fluorescence dequenching observed at pH 5.0 resulted from fusion with the cells' plasma membranes, while that at pH 7.4 was with the membranes of endocytic vacuoles following endocytosis of the virus particles. Our results show that only the fluorescence dequenching observed at pH 7.4--but not that obtained at pH 5.0--was inhibited by lysosomotropic agents such as methylamine and ammonium chloride, or inhibitors of endocytosis such as EDTA and NaN3.  相似文献   

16.
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.  相似文献   

17.
Mn(II) EPR binding studies with reduced acyl-carrier protein (ACP-SH) strongly suggest the presence of two relatively high-affinity manganese-binding sites (average Kd/site approximately 80 microM) at physiological pH. Lowering the pH or titrating with sodium chloride reduces the average number of bound divalent cations and decreases the binding affinity. This is consistent with the idea that anionic ligand(s), e.g. the carboxylate of glutamic or aspartic acid, on the protein are involved in manganese ion coordination. At pH values above 8.0, binding affinity is also reduced, whereas the average number of bound metal ions increases to about five at pH 8.5. By interacting weakly with divalent cations (average Kd/site approximately 1 mM), octanoyl acyl-carrier protein (OcoACP) exhibits dramatically different metal-ion-binding properties compared to ACP-SH. Calcium and magnesium can compete in either ACP species for manganese binding. Photochemically-induced dynamic nuclear polarisation 1H-NMR experiments strongly suggest that ACP-SH and OcoACP undergo at pH-induced conformational change between pH 5.5 and pH 7.0, and that divalent cations stabilize the protein against such pH-induced structural perturbations.  相似文献   

18.
Adsorption of the tailed mycoplasma virus L3 to cell membranes.   总被引:4,自引:2,他引:2       下载免费PDF全文
The adsorption properties of the tailed bacteriophage L3 to Acholeplasma laidlawii cells were studied. Adsorption followed a biphasic curve. Reversibility and virus heterogeneity were not sufficient to explain the break in the adsorption curve. Binding studies showed that each colony-forming unit could bind about 350 virions. The electrostatic nature of L3 adsorption was indicated by the effect of cations, pH, and temperature on the adsorption rate constant. L3 adsorption appeared to have a requirement for Ca2+, which could not be replaced by the mono- and divalent cations examined. Ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid inhibition of adsorption was totally reversed by added Ca2+. The effects of EDTA, proteases, and lectins on absorption indicated that membrane proteins are the L3 receptors. The model for L3 adsorption is a multivalent one involving lateral diffusion of adsorbed virions and receptor proteins.  相似文献   

19.
Calf brain membranes catalyze the lipolytic cleavage of dolichyl [14C]oleate added as an aqueous dispersion in Triton X-100. The enzymatic release of [14C]oleate from the dolichyl ester is not affected by divalent cations or EDTA, but the lipase activity is inhibited by iodoacetamide and pHMB. The amount of [14C]oleate released is dependent on the time of incubation, the amount of membrane protein added and the concentration of the radiolabeled lipid substrate. Dolichyl ester hydrolase activity exhibits a pH optimum of 7.5, distinguishing this lipase activity from cholesteryl ester hydrolase (5.0–5.5) and triolein hydrolase (5.0) activity associated with the same membrane preparations. The enzymatic hydrolysis of dolichyl [14C]oleate is also partially inhibited by oleate and free dolichol, possibly by end-product inhibition.  相似文献   

20.
Circular dichroism spectroscopy, absorption spectroscopy, measurements of Tm values, sedimentation analysis and electron microscopy were used to study properties of calf thymus DNA in methanol-water mixtures as a function of monovalent cation (Na+ or Cs+) concentration and also in the presence of divalent cations Ca2+, Mg2+, and Mn2+. In the absence of divalent cations only slight conformational changes occurred and no condensation and/or aggregation could be detected. The Tm values depend on the amount of methanol and on the nature and concentration of cations. In methanol-water mixtures higher thermal stability was observed in solutions containing Cs+ ions. Up to 40% (v/v) methanol the addition of divalent ions leads to DNA stabilization. At methanol concentration higher than 50% the presence of divalent cations causes DNA condensation and denaturation even at room temperature. The denaturation is reversible with respect to EDTA addition indicating that no separation of complementary strands occurred and the resulting form of DNA is probably similar to the P form. DNA destacking appears to be a direct consequence of stronger cation binding by the condensed DNA in methanol-water mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号