首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phorbol esters on cyclic AMP production in rat CNS tissue was examined. Using a prelabeling technique for measuring cyclic AMP accumulation in brain slices, it was found that phorbol 12-myristate, 13-acetate (PMA) enhanced the cyclic AMP response to forskolin and a variety of neurotransmitter receptor stimulants while having no effect on second messenger accumulation itself. A short (15-min) preincubation period with PMA was required to obtain maximal enhancement, whereas the augmentation was lessened by prolonged exposure (3 h) to the phorbol. The response to PMA was concentration dependent (EC50 = 1 microM) and regionally selective, being most apparent in forebrain, and was not influenced by removal of extracellular calcium or by inhibition of phosphodiesterase or phospholipase A2. Only those phorbols known to stimulate protein kinase C augmented the accumulation of cyclic AMP. Moreover, the membrane substrates phosphorylated by endogenous C kinase and by a partially purified preparation of this enzyme were similar. The results suggest that phorbol esters, by activating protein kinase C, modify the cyclic AMP response to brain neurotransmitter receptor stimulation in brain by influencing a component of the adenylate cyclase system beyond the transmitter recognition site.  相似文献   

2.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

3.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   

4.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

5.
Abstract: The effects of forskolin, an adenylate cyclase activator, were investigated on adrenocorticotropin (ACTH) secretion from AtT-20/D16-16 mouse pituitary tumor cells. Forskolin increased adenylate cyclase activity in these cells in the absence of added guanyl nu-cleotide, an effect blocked by somatostatin. Cyclic AMP synthesis and ACTH secretion increased in a concentration-dependent manner, not only in the clonal cells, but in primary cultures of rat anterior pituitary as well. Somatostatin inhibited cyclic AMP synthesis and ACTH secretion in response to forskolin. When forskolin was coapplied with corticotropin releasing factor, cyclic AMP synthesis was potentiated and ACTH secretion additive. The calcium channel blocker, nifedipine, inhibited forskolin, and 8-bromocyclic AMP stimulated ACTH secretion. These data suggest that ACTH secretion may be regulated at the molecular level by changes in cyclic AMP formation, which in turn regulate a calcium gating mechanism.  相似文献   

6.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   

7.
Microtubules purified from brain tissue contain endogenous cyclic AMP (cAMP)-dependent protein kinase activity, and microtubule-associated protein 2 (MAP2) is the major substrate. Beef brain microtubules were prepared and used as a model system to study the differential effects of rationally selected cyclic nucleotide analogues on microtubule receptor protein kinase. Data are presented to indicate that the following molecular interactions are essential for activation of the phosphorylation of MAP2: (a) hydrogen bond formation toward the 2', 3', or 5' position, (b) interaction with phosphorus, and (c) no hydrogen bonds but hydrophobic interactions at the base moiety. Thus, the activation mechanism of the type II protein kinase associated with brain microtubules resembles the mechanism found in protein kinases of other systems. In addition, we have studied the effect of the two diastereomers of adenosine 3',5'-monophosphorothioate (cAMPS). The (Sp)-cAMPS isomer was found to activate MAP2 protein kinase, whereas the (Rp)-cAMPS isomer had no activating effect. In contrast, this compound was able to inhibit cAMP-stimulated MAP2 phosphorylation and thus acts as an antagonist of the Sp diastereomer and cAMP. Hence, this analogue provides a useful means to clarify further the effect of cAMP-dependent phosphorylation on functional properties in microtubules in general.  相似文献   

8.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Primary cultures of bovine adrenal chromaffin cells contain neurofilament proteins that are hypophosphorylated. When the cells were grown in medium containing 32Pi and 0.1 microM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), 32P-labelling of the three neurofilament subunits was increased 6- to 20-fold relative to controls, the highest level of stimulation occurring for the mid-sized subunit. Addition of the protease inhibitor leupeptin to the growth medium had no effect on TPA-stimulated phosphorylation. The increased 32P incorporation was accompanied by a marked reduction in the gel electrophoretic mobilities of the two largest subunits. The augmented phosphorylation was observed 10 min after addition of TPA to a concentration of 0.1 microM or after 1 h of incubation in the presence of 0.01 microM TPA. One-dimensional peptide mapping and phosphoamino acid analysis indicated that TPA stimulated the phosphorylation of seryl residues at new sites in the mid-sized subunit. All of the latter subunit contained in the cytoskeletal fraction of chromaffin cells was converted to a more highly phosphorylated state after the cells were grown in the presence of TPA for 1 h.  相似文献   

10.
In the preceding report we demonstrated a dose-dependent increase in 32P-phosphoprotein labeling after 24-h exposure of cultured cerebellar granule neurons to methyl mercury (MeHg), a response that was not observed in glial cultures. In the present study we have examined 32P-labeled phosphoproteins by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. At concentrations of 0.5 and 1 microM, which were not extensively cytotoxic, MeHg enhanced phosphorylation of numerous acidic proteins, particularly a cluster of proteins with Mr approximately 28,000 and pI approximately 5.7-5.9 (pp 28/5.7-5.9) and a protein with Mr approximately 58,000 and pI approximately 5.6. The pp28 cluster displayed considerable two-dimensional pattern variability from one experiment to the next, suggesting susceptibility to subtle structural modifications. Time course studies revealed that increased 32P phospholabeling of pp28/5.7-5.9 was detectable after 12-h exposure to 3 microM MeHg and reached values of 300-500% of control by 24 h. These studies also showed that among the 21 proteins analyzed by two-dimensional densitometry, 32P phospholabeling of four proteins increased by 20-50% and of two proteins decreased by 20-50% after 24-h treatment. However, exposure to 10 microM MeHg produced stimulation of pp28/5.7-5.9 32P phospholabeling within 2 h. Under these conditions a relatively high stimulation (sevenfold) of pp28/5.7 phospholabeling occurred, while pp28/5.9 32P phospholabeling was only moderately (5-20%) enhanced. 35S and 32P double-label analysis of cells treated with 0, 0.5, and 1 microM MeHg indicated specific stimulation of 32P phospholabeling of these proteins without increased polypeptide synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The present study demonstrates that 3,4-dihydroxyphenylethylamine (DA, dopamine) prevents neurotensin (NT) stimulation of both prolactin (PRL) release and calcium influx by interacting with specific receptors that are functionally linked to calcium channels. As shown by the studies with dispersed cells from rat anterior pituitary, the pharmacology of the control of PRL release and calcium influx, both induced by NT, was found to be typical of a DAergic process. This was demonstrated by the order of potency of agonists in inhibiting PRL release and calcium influx (DA greater than epinephrine greater than norepinephrine much greater than isoproterenol); by the high affinity of antagonists such as haloperidol and fluphenazine for this process; and by the high degree of stereoselectivity of sulpiride. Specific D2 receptor agonists, such as bromocriptine and lisuride, and the specific D2 receptor antagonist (-)-sulpiride were found to be highly potent on the DA receptors negatively coupled with calcium channels and PRL release. DA was found to lack the capacity to change the influx of calcium induced by either the sodium channel activator veratridine or high extracellular potassium levels, thus indicating a specific action of this amine on calcium channels sensitive to NT. In a range of concentrations that are effective in inhibiting either the calcium influx or the PRL release, both induced by NT, DA did not alter the cyclic AMP generating system. DA (from 1.0 nM to 50 nM) did not affect adenylate cyclase activity in rat pituitary gland homogenates and did not modify intracellular cyclic AMP levels in pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Two-dimensional gel electrophoresis of proteins labeled with 32P1 in S49 mouse lymphoma cells revealed five phosphoproteins that were rapidly and reversibly dephosphorylated in response to elevation of cyclic AMP (cAMP). Under basal conditions, labeling of at least two of these proteins was limited by slow turnover of protein-bound phosphate. The rapid cAMP-mediated dephosphorylation of these species was attributable, therefore, to stimulation of a specific phosphoprotein phosphatase.  相似文献   

14.
The effect of phorbol esters and so the involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C;PKC) in the release of acetylcholine (ACh) was studied using Torpedo electric organ synaptosomes. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a known activator of PKC, induced neurotransmitter release in a concentration-dependent manner and increased the potassium-evoked release of ACh. The effect of TPA was shown to be independent of the extrasynaptosomal calcium concentration. TPA-induced ACh release was reversed by H-7, an inhibitor of PKC activity. This drug showed no effect on potassium-evoked ACh release. Botulinum toxin, a strong blocker of potassium-induced ACh release in that synaptosomal preparation, showed no inhibitory effect on the TPA-induced ACh release. Our results suggest that activation of PKC potentiates the release of an ACh pool that is not releasable by potassium depolarization, independently of the extracellular calcium concentration.  相似文献   

15.
Simultaneous treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) and dibutyryl cyclic AMP (diBu-cAMP) for 72 h induced neurites in NG108-15 cells significantly longer than treatment with each alone. Treatment for 72 h with both drugs induced irreversible neurite extension and a decline in protein kinase C activity, although neurites extended by diBu-cAMP alone disappeared after the withdrawal of the drug. The expression of growth-associated protein-43 (GAP-43) mRNA was also observed by a combined application of TPA and diBu-cAMP. The increased level of GAP-43 mRNA induced by treatment with both drugs for 72 h was maintained at least 24 h after withdrawal of the drugs. In cells transfected with GAP-43 cDNA, neurites induced by treatment with diBu-cAMP alone for 72 h were maintained at least 48 h after removal of the drugs. These results suggest that GAP-43 could be involved in the maintenance of elongated neurites and that a decline in protein kinase C activity may be involved in the accumulation of GAP-43.  相似文献   

16.
Abstract: The involvement of protein kinase C and its interaction with interleukin 1β in the control of interleukin 6 release by cortical astrocytes was studied. The blockade of protein kinase C catalytic domain, by staurosporine, as well as the desensitization of protein kinase C by short-term phorbol 12-myristate 13-acetate pretreatment, increased the basal release of interleukin 6 by rat cortical astrocytes, whereas calphostin C, an antagonist of phorbol ester binding on protein kinase C regulatory domain, did not affect the basal release of the cytokine. The activation of protein kinase C by phorbol 12-myristate 13-acetate enhanced concentration- and time-dependently interleukin 6 release. This stimulatory action of phorbol 12-myristate 13-acetate was significantly reduced by staurosporine, by calphostin C, and by the desensitization of protein kinase C. Interleukin 1β increased interleukin 6 release in a concentration-related manner. Protein kinase C inhibition, by staurosporine or desensitization, potentiated severalfold, whereas calphostin C reduced interleukin 1β stimulation of interleukin 6 release. The treatment of cortical astrocytes with both interleukin 1β (3 ng/ml) and phorbol 12-myristate 13-acetate (10 nM) caused a synergistic stimulation of interleukin 6 release and its gene expression, an effect that was not relieved by either 20 nM staurosporine or by calphostin C but was slightly affected by protein kinase C desensitization. In conclusion, our data show that in rat cortical astrocytes the basal release of interleukin 6 is under a tonic inhibition exerted by a protein kinase C isoform or isoforms sensitive to blockade by staurosporine and desensitization but insensitive to calphostin C. Interleukin 1β stimulated interleukin 6 secretion via a mechanism that is also negatively modulated by a protein kinase C isoform or isoforms sensitive to staurosporine and desensitization. Finally, we showed that interleukin 1β and phorbol 12-myristate 13-acetate synergistically stimulated interleukin 6 release and its gene expression, operating in a manner insensitive to protein kinase C blockers and slightly reduced by protein kinase C desensitization.  相似文献   

17.
Abstract: Neurotransmitter receptors that increase phosphatidylinositol hydrolysis generate second messengers that activate protein kinase C. Here, we used metabotropic glutamate receptor agonists to increase both phosphatidylinositol hydrolysis and secretion of the soluble extracellular fragment of amyloid precursor protein (APPs) from cortical astrocyte cultures. The increase in APPs secretion was mimicked by direct activation of protein kinase C with phorbol ester and was suppressed by the metabotropic glutamate receptor antagonist l -(+)-2-amino-3-phosphonopropionic acid or by the protein kinase C inhibitor GF109203X. Ionotropic glutamate agonists did not increase APPs secretion. Forskolin or dibutyryl cyclic AMP inhibited the increase in APPs secretion caused by metabotropic glutamate receptor agonists or by phorbol ester treatment but did not affect basal APPs levels. Therefore, glutamatergic agonists that increase protein kinase C activation or decrease cyclic AMP formation may enhance the conversion of full-length APP to nonamyloidogenic APPs in Alzheimer's disease.  相似文献   

18.
Cyclic AMP-dependent phosphorylation of the rat brain sodium channel was reported to be restricted to five sites within an approximately 210 amino acid region of the primary sequence that is deleted in the homologous sodium channel from rat skeletal muscle. We find that, in spite of this deletion, the rat muscle sodium channel alpha-subunit is also an excellent substrate for phosphorylation by this kinase both in primary muscle cells in tissue culture and in vitro after isolation from adult muscle. Sodium channel protein purified from adult rat skeletal muscle was readily phosphorylated in vitro by the catalytic subunit of the bovine cyclic AMP-dependent protein kinase (PKa). Only the 260,000 MW alpha-subunit was labeled, with a maximum level of incorporation in vitro of approximately 0.5 mol [32P]phosphate per mole of channel protein. The beta-subunit of the channel is not phosphorylated under these conditions. In primary rat skeletal muscle cells in culture, incorporation of phosphate into the channel alpha-subunit is stimulated 1.3- to 1.5-fold by treatment of the cells with forskolin. Phosphorylation of the sodium channel isolated from these cells could also be demonstrated in vitro using PKa. This in vitro phosphorylation could be inhibited 80-90% by pretreatment of the cells in culture with forskolin, suggesting that the sites labeled in vitro by PKa were the same as those phosphorylated in the intact cells by the endogenous cyclic AMP-dependent kinase. In both the adult muscle channel and the channel from muscle cells in culture, phosphorylation by PKa was limited to serine residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract: Sodium- and chloride-coupled transport of dopamine from synapses into presynaptic terminals plays a key role in terminating dopaminergic neurotransmission. Regulation of the function of the dopamine transporter, the molecule responsible for this translocation, is thus of interest. The primary sequence of the dopamine transporter contains multiple potential phosphorylation sites, suggesting that the function of the transporter could be regulated by phosphorylation. Previous work from this laboratory has documented that phorbol ester activation of protein kinase C (PKC) decreases dopamine transport V max in transiently expressing COS cells. In the present report, we document in vivo phosphorylation of the rat dopamine transporter stably expressed in LLC-PK1 cells and show that phosphorylation is increased threefold by phorbol esters. Dopamine uptake is also regulated by phorbol esters in these cells; phorbol 12-myristate 13-acetate (PMA) reduces transport V max by 35%. Parallels between the time course, concentration dependency, and staurosporine sensitivity of alterations in transporter phosphorylation and transporter V max suggest that dopamine transporter phosphorylation involving PKC could contribute to this decreased transporter function. Phosphorylation of the dopamine transporter by PKC or by a PKC-activated kinase could be involved in rapid neuroadaptive processes in dopaminergic neurons.  相似文献   

20.
Abstract: In this study, the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic nucleotide accumulation and melatonin (MT) production in dispersed rat pinealocytes were measured. Treatment with PACAP (10−7 M ) increased MT production 2.5-fold. PACAP (10−7 M ) also increased cyclic AMP accumulation four- to fivefold; this effect was potentiated two- to three-fold by α1-adrenergic activation. This potentiation appears to involve protein kinase C (PKC) because α1-adrenergic activation is known to translocate PKC and the PACAP-stimulated cyclic AMP accumulation was potentiated ninefold by a PKC activator, 4β-phorbol 12-myristate 13-acetate (PMA). Phenylephrine and PMA also potentiated the PACAP-stimulated MT accumulation. These results indicate that cyclic AMP is one second messenger of PACAP in the pineal gland and that the effects of PACAP on cyclic AMP and MT production can be potentiated by an α1-adrenergic → PKC mechanism. In addition to these findings, it was observed that PACAP treatment with or without phenylephrine or PMA did not alter cyclic GMP accumulation. This indicates that PACAP is the first ligand identified that increases cyclic AMP accumulation in the pineal gland without increasing cyclic GMP accumulation. That PACAP fails to activate the vasoactive intestinal peptide/cyclic GMP pathway suggests that the vasoactive intestinal peptide receptors present in the pineal may be distinct from the type II PACAP receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号