首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
Staphylococcus aureus pI258 CadC is a metal sensor protein that regulates the expression of the cad operon which encodes metal ion resistance proteins involved in the efficient efflux of Cd(II), Pb(II), Zn(II) and, according to one report, Bi(III) ions. In this paper, direct evidence is presented that Bi(III) binds to CadC and negatively regulates cad operator/promoter (O/P) binding. Optical absorption spectroscopy reveals that dimeric CadC binds approximately 0.8 mol equivalents of Bi(III) per CadC monomer to form a coordination complex characterized by three S(-)-->Bi(III) ligand-to-metal charge transfer transitions, with the longest wavelength absorption band centered at 415 nm (epsilon(415)=4000 M(Bi)(-1) cm(-1)). UV-Vis absorption spectra of wild-type and mutant Cys-->Gly (Ser) substitution CadC mutants compared to [Bi(DTT)(2)], [Bi(GSH)(3)] and [Bi(NAC)](3) model complexes reveal that Cys7, Cys11, Cys60 and Cys58 directly coordinate Bi(III) in a tetrathiolate coordination complex. The apparent affinity derived from a Bi(III)-displacement optical titration with Cd(II) is estimated to be K(Bi)< or =10(12) M(-1). Apo-CadC binds with high affinity [ K(a)=1.1(+/-0.3)x10(9) M(-1); 0.40 M NaCl, pH 7.0, 25 degrees C] to a 5'-fluorescein-labeled cad O/P oligonucleotide,while the binding of one molar equivalent of Bi(III) per CadC monomer (Bi(1)-CadC) reduces the affinity by approximately 170-fold. Strikingly, Bi(III)-responsive negative regulation of cad O/P binding is abrogated for Bi(1)-C60G CadC and severely disrupted in Bi(1)-C7G CadC, whose relative affinity is reduced only 10-fold. The mechanism of Bi(III)-responsive metalloregulation is discussed, based on the findings presented here. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0336-9.  相似文献   

7.
Staphylococcus aureus pI258 CadC is an extrachromosomally encoded metalloregulatory repressor protein from the ArsR superfamily which negatively regulates the expression of the cad operon in a metal-dependent fashion. The metalloregulatory hypothesis holds that direct binding of thiophilic divalent cations including Cd(II), Pb(II), and Zn(II) by CadC allosterically regulates the DNA binding activity of CadC to the cad operator/promoter (O/P). This report presents a detailed characterization of the metal binding and DNA binding properties of wild-type CadC. The results of analytical ultracentrifugation experiments suggest that both apo- and Cd(1)-CadC are stable or weakly dissociable homodimers characterized by a K(dimer) = 3.0 x 10(6) M(-1) (pH 7.0, 0.20 M NaCl, 25.0 degrees C) with little detectable effect of Cd(II) on the dimerization equilibrium. As determined by optical spectroscopy, the stoichiometry of Cd(II) and Pb(II) binding is approximately 0.7-0.8 mol/mol of wild-type CadC monomer. Chelator (EDTA) competition binding isotherms reveal that Cd(II) binds very tightly, with K(Cd) = 4.3 (+/-1.8) x 10(12) M(-1). The results of UV-Vis and X-ray absorption spectroscopy of the Cd(1) complex are consistent with a tetrathiolate (S(4)) complex formed by four cysteine ligands. The (113)Cd NMR spectrum reveals a single resonance of delta = 622 ppm, consistent with an S(3)(N,O) or unusual upfield-shifted S(4) complex. The Pb(II) complex reveals two prominent absorption bands at 350 nm (epsilon = 4000 M(-1) cm(-1)) and 250 nm (epsilon = 41 000 M(-1) cm(-1)), spectral properties consistent with three or four thiolate ligands to the Pb(II) ion. The change in the anisotropy of a fluorescein-labeled oligonucleotide containing the cad O/P upon binding CadC and analyzed using a dissociable CadC dimer binding model reveals that apo-CadC forms a high-affinity complex [K(a) = (1.1 +/- 0.3) x 10(9) M(-1); pH 7.0, 0.40 M NaCl, 25 degrees C], the affinity of which is reduced approximately 300-fold upon the binding of a single molar equivalent of Cd(II) or Pb(II). The implications of these findings on the mechanism of metalloregulation are discussed.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The three-dimensional structure of [(113)Cd7]-metallothionein-A (MTA) of the sea urchin Strongylocentrotus purpuratus was determined by homonuclear(1)H NMR experiments and heteronuclear [(1)H, (113)Cd]-correlation spectroscopy. MTA is composed of two globular domains, an N-terminal four-metal domain of the amino acid residues 1 to 36 and a Cd4Cys11cluster, and a C-terminal three-metal domain including the amino acid residues 37 to 65 and a Cd3Cys9cluster. The structure resembles the known mammalian and crustacean metallothioneins, but has a significantly different connectivity pattern of the Cys-metal co-ordination bonds and concomitantly contains novel local folds of some polypeptide backbone segments. These differences can be related to variations of the Cys sequence positions and thus emphasize the special role of the cysteine residues in defining the structure of metallothioneins, both on the level of the domain architecture and the topology of the metal-thiolate clusters.  相似文献   

15.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

16.
17.
The proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli is composed of two types of subunits, alpha and beta, organized as an alpha(2)beta(2) tetramer. The protein contains three recognizable domains, of which domain II is the transmembrane region of the molecule containing the pathway for proton translocation. Domain II is composed of four transmembrane helices at the carboxyl-terminus of the alpha subunit and either eight or nine transmembrane helices at the amino-terminal region of the beta subunit. We have introduced pairs of cysteine residues into a cysteine-free transhydrogenase by site-directed mutagenesis. Disulfide bond formation between some of these cysteine residues occurred spontaneously or on treatment with cupric 1, 10-phenanthrolinate. Analysis of crosslinked products confirmed that there are nine transmembrane helices in the domain II region of the beta subunit. The proximity to one another of several of the transmembrane helices was determined. Thus, helices 2 and 4 are close to helix 6 (nomenclature of Meuller and Rydstr?m, J. Biol. Chem. 274, 19072-19080, 1999), and helix 3 and the carboxyl-terminal eight residues of the alpha subunit are close to helix 7. In the alpha(2)beta(2) tetramer, helices 2 and 4 of one alpha subunit are close to the same pair of transmembrane helices of the other alpha subunit, and helix 6 of one beta subunit is close to helix 6 of the other beta subunit.  相似文献   

18.
19.
We previously reported the de novo design of an amphiphilic peptide [YGG(IEKKIEA)4] that forms a native-like, parallel triple-stranded coiled coil. Starting from this peptide, we sought to regulate the assembly of the peptide by a metal ion. The replacement of the Ile18 and Ile22 residues with Ala and Cys residues, respectively, in the hydrophobic positions disrupted of the triple-stranded alpha-helix structure. The addition of Cd(II), however, resulted in the reconstitution of the triple-stranded alpha-helix bundle, as revealed by circular dichroism (CD) spectroscopy and sedimentation equilibrium analysis. By titration with metal ions and monitoring the change in the intensity of the CD spectra at 222 nm, the dissociation constant Kd was determined to be 1.5 +/- 0.8 microM for Cd(II). The triple-stranded complex formed by the 113Cd(II) ion showed a single 113Cd NMR resonance at 572 ppm whose chemical shift was not affected by the presence of Cl- ions. The 113Cd NMR resonance was connected with the betaH protons of the cysteine residue by 1H-113Cd heteronuclear multiple quantum correlation spectroscopy. These NMR results indicate that the three cysteine residues are coordinated to the cadmium ion in a trigonal-planar complex. Hg(II) also induced the assembly of the peptide into a triple-stranded alpha-helical bundle below the Hg(II)/peptide ratio of 1/3. With excess Hg(II), however, the alpha-helicity of the peptide was decreased, with the change of the Hg(II) coordination state from three to two. Combining this construct with other functional domains should facilitate the production of artificial proteins with functions controlled by metal ions.  相似文献   

20.
Infrared spectroscopy was used to study the structures and transitions in hydrated gels of double-helical poly(dG-dC) complexed with the metal carcinogens Cd(II) and Ag(I). For one Cd(II) per ten nucleotides (r = 0.1), the B structure was stable at high and moderate hydrations with D2O and the B and Z structures coexisted at low hydrations. For poly(dG-dC) with Cd(II) at r = 0.2 to 0.35, the Z structure was stable at high hydrations (94% r.h. for r = 0.2). At a given value of hydration, H2O gave a higher content of Z structure than D2O. Cd(II) most likely binds to guanine residues at N7 in both the B and Z forms of poly(dG-dC) but binding to guanine N3 can not be excluded. It is unlikely that Cd(II) binds to cytosine residues at the r values studied and the cytosine residues did not protonate at N3 as Cd(II) bound to guanine residues. Poly(dG-dC) with Ag(I) at r = 0.2 to 0.36, existed in a B-family structure which is different from the B-family structure of the type I complex of Ag(I) and calf-thymus DNA. Poly(dG-dC) with Ag(I) did not assume the Z structure at lower hydrations even though NO3- was present in the sample. Ag(I) differs from other soft-metal acids which promote the Z structure. Ag(I) most likely binds to the guanine N7 or N3 and not to cytosine residues. Cytosine residues did not protonate at N3 as Ag(I) was bound to guanine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号