共查询到20条相似文献,搜索用时 0 毫秒
1.
There is substantial experimental evidence from studies using both intact tissue and isolated single cells to support the existence of different cell types within the ventricular wall of the heart, each possessing different electrical properties. However other studies have failed to find these differences, and instead support the idea that electrical coupling in vivo between regions with different cell types smoothes out differences in action potential shape and duration. In this study we have used a computational model of electrical activation in heterogenous 2D and 3D cardiac tissue to investigate the propagation of both normal beats and arrhythmias. We used the Luo–Rudy dynamic model for guinea pig ventricular cells, with simplified Ca 2+ handling and transmural heterogeneity in IKs and Ito. With normal cell-to-cell coupling, a layer of M cells was not necessary for the formation of an upright T wave in the simulated electrocardiogram, and the amplitude and configuration of the T wave was not greatly affected by the thickness and configuration of the M cell layer. Transmural gradients in repolarisation pushed re-entrant waves with an intramural filament towards either the base or the apex of the ventricles, and caused transient break up of re-entry with a transmural filament. 相似文献
3.
Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is
not well understood. 相似文献
4.
Stochastic gating of ion channels introduces noise to membrane currents in cardiac muscle cells (myocytes). Since membrane currents drive membrane potential, noise thereby influences action potential duration (APD) in myocytes. To assess the influence of noise on APD, membrane potential is in this study formulated as a stochastic process known as a diffusion process, which describes both the current-voltage relationship and voltage noise. In this framework, the response of APD voltage noise and the dependence of response on the shape of the current-voltage relationship can be characterized analytically. We find that in response to an increase in noise level, action potential in a canine ventricular myocytes is typically prolonged and that distribution of APDs becomes more skewed towards long APDs, which may lead to an increased frequency of early after-depolarization formation. This is a novel mechanism by which voltage noise may influence APD. The results are in good agreement with those obtained from more biophysically-detailed mathematical models, and increased voltage noise (due to gating noise) may partially underlie an increased incidence of early after-depolarizations in heart failure. 相似文献
5.
It has been shown in the literature that myocytes isolated from the ventricular walls at various intramural depths have different action potential durations (APDs). When these myocytes are embedded in the ventricular wall, their inhomogeneous properties affect the sequence of repolarization and the actual distribution of the APDs in the entire wall. In this article, we implement a mathematical model to simulate the combined effect of (a) the non-homogeneous intrinsic membrane properties (in particular the non-homogeneous APDs) and (b) the electrotonic currents that modulate the APDs when the myocytes are embedded in the ventricular myocardium. In particular, we study the effect of (a) and (b) on the excitation and repolarization sequences and on the distribution of APDs in the ventricles. We implement a Monodomain tissue representation that includes orthotropic anisotropy, transmural fiber rotation and homogeneous or heterogeneous transmural intrinsic membrane properties, modeled according to the phase I Luo-Rudy membrane ionic model. Three-dimensional simulations are performed in a cartesian slab with a parallel finite element solver employing structured isoparametric trilinear finite elements in space and a semi-implicit adaptive method in time. Simulations of excitation and repolarization sequences elicited by epicardial or endocardial pacing show that in a homogeneous slab the repolarization pathways approximately follow the activation sequence. Conversely, in the heterogeneous cases considered in this study, we observed two repolarization wavefronts that started from the epi and the endocardial faces respectively and collided in the thickness of the wall and in one case an additional repolarization wave starting from an intramural site. Introducing the heterogeneities along the transmural epi-endocardial direction affected both the repolarization sequence and the APD dispersion, but these effects were clearly discernible only in transmural planes. By contrast, in planes parallel to epi- and endocardium the APD distribution remained remarkably similar to that observed in the homogeneous model. Therefore, the patterns of the repolarization sequence and APD dispersion on the epicardial surface (or any other intramural surface parallel to it) do not reveal the uniform transmural heterogeneity. 相似文献
7.
BackgroundCardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity.ResultsThis paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm.ConclusionsWe give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time domains. The results obtained show a complete agreement with literature findings and also with the physical interpretation of the phenomenon. Furthermore, various numerical experiments are presented to confirm the accuracy, efficiency and stability of the proposed method. In particular, we show that the scheme is second-order accurate in space. 相似文献
8.
It is well known that cardiac action potentials are shortened by increasing the external calcium concentration (Cao). The shortening is puzzling since Ca ions are thought to carry inward current during the plateau. We therefore studied the effects of Cao on action potentials and membrane currents in short Purkinje fiber preparations. Two factors favor the earlier repolarization. First, calcium-rich solutions generally raise the plateau voltage; in turn, the higher plateau level accelerates time- and voltage-dependent current changes which trigger repolarization. Increases in plateau height imposed by depolarizing current consistently produced shortening of the action potential. The second factor in the action of Ca ions involves iK1, the background K current (inward rectifier). Raising Cao enhances iK1 and thus favors faster repolarization. The Ca-sensitive current change was identified as an increase in iK1 by virtue of its dependence on membrane potential and Ko. A possible third factor was considered and ruled out: unlike epinephrine, calcium-rich solutions do not enhance slow outward plateau current, ikappa. These results are surprising in showing that calcium ions and epinephrine act quite differently on repolarizing currents, even though they share similar effects on the height and duration of the action potential. 相似文献
9.
The aim of this work is the analysis of the nonlinear dynamics of two-dimensional mapping model of cardiac action potential duration (2D-map APD) with memory derived from one dimensional map (1D-map). Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting cardiac arrhythmias. For a constant rate of stimulation the short action potential during alternans is followed by a longer DI and inversely. It has been suggested that these differences in DI are responsible for the occurrence and maintenance of APD alternans. We focus our attention on the observed bifurcations produced by a change in the stimulation period and a fixed value of a particular parameter in the model. This parameter provides new information about the dynamics of the APD with memory, such as the occurrence of bistabilities not previously described in the literature, as well as the fact that synchronization rhythms occur in different ways and in a new fashion as the stimulation frequency increases. Moreover, we show that this model is flexible enough as to accurately reflect the chaotic dynamics properties of the APD: we have highlighted the fractal structure of the strange attractor of the 2D-map APD, and we have characterized chaos by tools such as the calculation of the Lyapunov exponents, the fractal dimension and the Kolmogorov entropy, with the next objective of refining the study of the nonlinear dynamics of the duration of the action potential and to apply methods of controlling chaos. 相似文献
10.
In normal cardiac myocytes, the action potential duration (APD) is several hundred milliseconds. However, experimental studies showed that under certain conditions, APD could be excessively long (or ultralong), up to several seconds. Unlike the normal APD, the ultralong APD increases sensitively with pacing cycle length even when the pacing rate is very slow, exhibiting a sensitive slow rate-dependence. In addition, these long action potentials may or may not exhibit early afterdepolarizations (EADs). Although these phenomena are well known, the underlying mechanisms and ionic determinants remain incompletely understood. In this study, computer simulations were performed with a simplified action potential model. Modifications to the L-type calcium current (I(Ca,L)) kinetics and the activation time constant of the delayed rectifier K current were used to investigate their effects on APD. We show that: 1) the ultralong APD and its sensitive slow rate-dependence are determined by the steady-state window and pedestal I(Ca,L) currents and the activation speed and the recovery of the delayed rectifier K current; 2) whether an ultralong action potential exhibits EADs or not depends on the kinetics of I(Ca,L); 3) increasing inward currents elevates the plateau voltage, which in general prolongs APD, however, this can also shorten APD when the APD is already ultralong under certain conditions; and 4) APD alternans occurs at slow pacing rates due to the sensitive slow rate-dependence and the ionic determinants are different from the ones causing APD alternans at fast heart rates. 相似文献
13.
Conduction velocity is a complex physiological process that integrates the active and passive properties of the excitable cell. The relations between these properties in determining the conduction velocity are not intuitively obvious, and models have been used frequently to illustrate important relationships. To study the relationships of important parameters and to evaluate commonly used models, we changed conduction velocity experimentally in sheep cardiac Purkinje strands by reducing extracellular Na systematically. Cable analyses were also performed to obtain passive membrane and cable properties. Resting membrane resistance and capacitance did not change, nor did core resistance. Active properties measured in addition to conduction velocity included maximal upstroke velocity, action potential height, time constant of the foot, peak inward current, and upstroke power. With reduction in extracellular Na, all of these parameters of the action potential changed nonlinearly and not in direct proportion to the change in conduction velocity. The only simple relation found was a linear relationship between maximal upstroke velocity and peak inward current, normalized by the capacity of the foot. Models based on the cable equation and the wave equation offer a basis for quantitative analysis of conduction, and these data can be used to test the models. 相似文献
14.
Parallel numerical simulations of excitation and recovery in three-dimensional myocardial domains are presented. The simulations are based on the anisotropic Bidomain and Monodomain models, including intramural fiber rotation and orthotropic or axisymmetric anisotropy of the intra- and extra-cellular conductivity tensors. The Bidomain model consist of a system of two reaction-diffusion equations, while the Monodomain model consists of one reaction-diffusion equation. Both models are coupled with the phase I Luo-Rudy membrane model describing the ionic currents. Simulations of excitation and repolarization sequences on myocardial slabs of different sizes show how the distribution of the action potential durations (APD) is influenced by both the anisotropic electrical conduction and the fiber rotation. This influence occurs in spite of the homogeneous intrinsic properties of the cell membrane. The APD dispersion patterns are closely correlated to the anisotropic curvature of the excitation wavefront. 相似文献
15.
Intrinsic spatial variations in repolarization currents in the heart can produce spatial gradients in action potential duration (APD) that serve as possible sites for conduction block and the initiation of reentrant activity. In well-coupled myocardium, however, electrotonic influences at the stimulus site and wavefront collision sites act to modulate any intrinsic heterogeneity in APD. These effects alter APD gradients over an extent larger than that suggested by the length constant associated with propagation and, thus, are hypothesized to play a greater role in smaller hearts used as experimental models of human disease. This study uses computer simulation to investigate how heart size, tissue properties, and the spatial assignment of cell types affect functional APD dispersion. Simulations were carried out using the murine ventricular myocyte model of Pandit et al. or the Luo-Rudy mammalian model in three-dimensional models of mouse and rabbit ventricular geometries. Results show that the spatial extent of the APD dispersion is related to the dynamic changes in transmembrane resistance during recovery. Also, because of the small dimensions of the mouse heart, electrotonic effects on APD primarily determine the functional dispersion of refractoriness, even in the presence of large intrinsic cellular heterogeneity and reduced coupling. APD dispersion, however, is found to increase significantly when the heart size increases to the size of a rabbit heart, unmasking intrinsic cell types. 相似文献
16.
The cardiovascular system operates under demands ranging from conditions of rest to extreme stress. One mechanism of cardiac stress tolerance is action potential duration shortening driven by ATP-sensitive potassium (K ATP) channels. K ATP channel expression has a significant physiologic impact on action potential duration shortening and myocardial energy consumption in response to physiologic heart rate acceleration. However, the effect of reduced channel expression on action potential duration shortening in response to severe metabolic stress is yet to be established. Here, transgenic mice with myocardium-specific expression of a dominant negative K ATP channel subunit were compared with littermate controls. Evaluation of K ATP channel whole cell current and channel number/patch was assessed by patch clamp in isolated ventricular cardiomyocytes. Monophasic action potentials were monitored in retrogradely perfused, isolated hearts during the transition to hypoxic perfusate. An 80–85% reduction in cardiac K ATP channel current density results in a similar magnitude, but significantly slower rate, of shortening of the ventricular action potential duration in response to severe hypoxia, despite no significant difference in coronary flow. Therefore, the number of functional cardiac sarcolemmal K ATP channels is a critical determinant of the rate of adaptation of myocardial membrane excitability, with implications for optimization of cardiac energy consumption and consequent cardioprotection under conditions of severe metabolic stress. 相似文献
17.
The properties of the autonomically regulated chloride current (ICl) were studied in isolated guinea pig ventricular myocytes. This current was elicited upon exposure to isoproterenol (ISO) and reversed upon concurrent exposure to acetylcholine (ACh). ICl was time independent and exhibited outward rectification. The responses to ISO and ACh could be blocked by propranolol and atropine, respectively, and ICl was also elicited by forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, and 3-isobutyl-l-methylxanthine, indicating that the current is regulated through a cAMP-dependent pathway. The reversal potential of the ISO- induced current followed the predicted chloride equilibrium potential, consistent with it being carried predominantly by Cl-. Activation of ICl produced changes in the resting membrane potential and action potential duration, which were Cl- gradient dependent. These results indicate that under physiological conditions ICl may play an important role in regulating action potential duration and resting membrane potential in mammalian cardiac myocytes. 相似文献
18.
Rapidly activating K(+) current (I(Kr)) blockers prolong action potential (AP) duration (APD) in a reverse-frequency-dependent manner and may induce arrhythmias, including torsade de pointes in the ventricle. The I(Kr) blocker dofetilide has been approved for treatment of atrial arrhythmias, including fibrillation. There are, however, a limited number of studies on the action of I(Kr) blockers on atrial AP. When we tested a mathematical model of the human atrial AP (M Courtemanche, RJ Ramirez, S Nattel. Am J Physiol Heart Circ Physiol 275: H301-H321, 1998) to examine the effects of dofetilide-type I(Kr) blockade, this model could not reproduce the reverse-frequency-dependent nature of I(Kr) blockade on atrial APD. We modified the model by introducing a slowly activating K(+) current activation parameter. As the slow time constant was increased, dofetilide-type blockade induced more prominent reverse-frequency-dependent APD prolongation. Using the modified model, we also examined the effects of two more types of I(Kr) blockade similar to those of quinidine and vesnarinone. Voltage- and time-dependent block of I(Kr) through the onset of inhibition by quinidine is much faster than by vesnarinone. When we incorporated the kinetics of the effects of these drugs on I(Kr) into the model, we found that quinidine-type blockade caused a reverse-frequency-dependent prolongation of APD that was similar to the effect of dofetilide-type blockade, whereas vesnarinone-type blockade did not. This finding coincides with experimental observations. The lack of the reverse frequency dependence in vesnarinone-type blockade was accounted for by the slow development of I(Kr) blockade at depolarized potentials. These results suggest that the voltage- and time-dependent nature of I(Kr) blockade by drugs may be critical for the phenotype of the drug effect on atrial AP. 相似文献
|