首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D P Giedroc  N Ling  D Puett 《Biochemistry》1983,22(24):5584-5591
The inhibition of the calmodulin-mediated stimulation of bovine brain cyclic nucleotide phosphodiesterase activity (3':5'-cyclic adenosine monophosphate 5'-nucleotidohydrolase, EC 3.1.4.17) by the 31-residue opiate peptide beta-endorphin has been investigated. Using conditions in which porcine brain calmodulin (6 nM) is limiting (i.e., to give a 3-fold, Ca2+-dependent stimulation of enzymic activity toward cyclic guanosine monophosphate), the domain of beta-endorphin responsible for the inhibition was mapped by using a series of deletion peptides. beta-Endorphin exhibited an ED50 of several micromolar under the conditions employed, and several amino-terminal deletion peptides were essentially as inhibitory as the parent peptide. Methionine enkephalin and various carboxy-terminal deletion peptides had no demonstrable effect at concentrations of 100-200 microM. Peptides 1-25 and 1-27 (C' fragment) inhibited the calmodulin-dependent activity of phosphodiesterase, but higher concentrations were required than of beta-endorphin. Studies using combined amino- and carboxy-terminal deletion peptides demonstrate that peptide 14-25 was the shortest peptide examined that was capable of inhibiting calmodulin stimulation of phosphodiesterase activity under the conditions used. There was no evidence to indicate that the amino-terminal region comprising residues 1-13 of beta-endorphin contributes to the measured inhibition of calmodulin-stimulated enzymic activity. The circular dichroic spectra of calmodulin, beta-endorphin, and mixtures of the two were obtained, and the ellipticity of the peptide-protein mixtures at 221 nm exceeded that expected by assuming simple additivity. This finding is consistent with a direct interaction of beta-endorphin with calmodulin which seems to lead to enhanced helicity of one or both components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The 31-residue neuropeptide porcine beta-endorphin was shown to inhibit the Ca2+-dependent calmodulin activation of highly purified bovine brain cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17). Using a series of deletion peptides, the minimal inhibitory peptide sequence was found to correspond to beta-endorphin residues 14-25, confirming previously reported results for crude enzyme preparations. A correlation was found between the relative inhibitory potency of a particular beta-endorphin deletion peptide and the efficacy of cross-linking that peptide to calmodulin with bis(sulfosuccinimidyl) suberate, strongly implicating peptide binding to calmodulin as the mechanism of the observed inhibition. We found that relatively modest concentrations of chlorpromazine significantly reduced the efficiency of cross-linking beta-endorphin 14-31 to calmodulin. Chlorpromazine-Sepharose affinity chromatography of peptide/calmodulin adducts showed that a significant portion of the cross-linked beta-endorphin 14-31/calmodulin complex (stoichiometry of 1 mol/mol) retained the ability to interact with the immobilized phenothiazine in a Ca2+-dependent and calmodulin-displaceable manner. In contrast, the 2:1 (peptide:protein) product exhibited no affinity for the immobilized phenothiazine. The use of this affinity chromatographic step allowed preparation of homogeneous populations of both 1:1 and 2:1 beta-endorphin 13-31/calmodulin complexes and assessment of their functional characteristics. Equilibrium binding studies with chlorpromazine revealed that the covalent attachment of one peptide molecule to calmodulin perturbed all phases of Ca2+-dependent drug binding, but the adduct still bound significant quantities of chlorpromazine. The 2:1 complex, however, showed little detectable binding of the phenothiazine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Modelling studies with beta-endorphin have clearly demonstrated that an amphiphilic secondary structural segment is a salient feature of the biologically active conformation of this 31-residue opioid peptide hormone. Here, we have initiated the synthesis of peptide models using unnatural building blocks by designing a beta-endorphin analogue (peptide 6) in which the hydrophilic linker region between the NH2-terminal enkephalin (residues 1-5) and the COOH-terminal helix (residues 10-28, sequence identical to that of peptide 3 in region 13-31, Fig. 1) consists of four units of gamma-amino-gamma-hydroxymethylbutyric acid connected by isopeptidic linkages. Peptide 6 has physical properties similar to that of peptide 3, as shown by surface monolayer and circular dichroism studies. The binding affinities of the two peptides to delta- and mu-receptors are also similar. In rat vas deferens assays, the present model is equipotent to peptide 3. The most striking result of all is the potent analgesic activity displayed by peptide 6 when injected intracerebroventricularly into mice. The potencies of peptides 6 and 3 are comparable in these assays. These studies clearly illustrate that one can use unusual building blocks to construct structural regions of synthetic analogues and still preserve the biological activity of peptide hormones.  相似文献   

4.
Binding of hormones and neuropeptides by calmodulin   总被引:5,自引:0,他引:5  
Calmodulin exhibits high-affinity, calcium-dependent binding of 1 mol/mol of the vasoactive intestinal peptide (VIP), secretin, and either the 42- or 43-residue gastric inhibitory peptide (GIP) with dissociation constants of 0.05-0.14 microM. The affinity of VIP for calmodulin approaches its affinity for the cell-surface VIP receptors. These peptides compete with both smooth muscle myosin light chain kinase and glucagon in calmodulin binding. Calculation of amino acid frequencies for eight calmodulin binding peptides (VIP, GIP, secretin, ACTH, beta-endorphin, substance P, glucagon, and dynorphin [Malencik, D. A., & Anderson, S. R. (1982) Biochemistry 21, 3480]) shows a below-average incidence of glutamyl residues, above-average incidence of glutaminyl residues, and average incidence of both aspartyl and asparaginyl residues. Predictions of structure from sequence suggest that the bound peptides contain strongly basic turns and coils in close association with regions having above-average beta-sheet potential. The temperature dependence of glucagon binding by calmodulin shows that the association is enthalpy driven.  相似文献   

5.
Indolicidin, ILPWKWPWWPWRR-NH(2), a short 13-residue antimicrobial and cytolytic peptide characterized from bovine neutrophils, has the calmodulin-recognition 1-5-10 hydrophobic pattern (indicated by amino acids in bold), is cationic, and thereby fulfills the requirements to interact with calmodulin. Hence, we have investigated the calmodulin-binding properties of indolicidin. Indolicidin interacted with calmodulin with fairly high affinity in a Ca(2+)-dependent manner. However, when bound, the peptide did not adopt helical conformation. Indolicidin also inhibited calmodulin-stimulated phosphodiesterase activity with IC(50) values in the nanomolar range. Replacement of either the proline residues of indolicidin with alanines or tryptophan residues with phenylalanines did not affect binding to calmodulin. However, these replacements had distinctive effects on the conformations of the bound peptides. While the alanine analog of indolicidin adopted predominantly alpha-helical conformation, the phenylalanine analog remained largely unordered. Differences in the ability of these analogs to inhibit the calmodulin-stimulated phosphodiesterase activity were observed. While the alanine analog was capable of inhibiting the activity with IC(50) values comparable to that of indolicidin, the phenylalanine analog did not inhibit the activity. Our results indicate that ability to adopt amphiphilic alpha-helical structure is not a prerequisite for binding to calmodulin and also binding does not necessarily result in inhibition of calmodulin-stimulated enzyme activities.  相似文献   

6.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   

7.
Des-, mono-, and diacetylated melanotropin (des-, mono-, and di-Ac MSH, respectively) were compared for their dose-related effects on content of adenosine 3':5'-monophosphate (cAMP) and tyrosinase activity in the Cloudman S91 mouse melanoma tumor. Des-Ac MSH was more potent than the acetylated forms of MSH at increasing cellular levels of cAMP; mono- and di-Ac MSHs, however, were more potent than des-Ac MSH at elevating the activity of the enzyme, tyrosinase. Lysine-gamma1 MSH, a melanotropin from the amino terminus of pro-opiomelanocortin, exhibited slight stimulatory effects on tyrosinase and these actions were less than additive to those of mono-Ac MSH. Unlike their actions on amphibian skin-darkening or in mammalian behavior, neither beta-endorphin1-31 nor its derivatives, N-Ac-beta-endorphin1-27 or beta-endorphin30-31 (glycylglutamine), exhibited any influence on tyrosinase activity evoked by mono-Ac MSH in the tumor cells.  相似文献   

8.
gamma-Endorphin generating endopeptidase (gamma EGE) activity is an enzyme activity which converts beta-endorphin into gamma-endorphin and beta-endorphin-(18-31). The inhibitory potency on gamma EGE activity of neuropeptides and analogues or fragments of neuropeptides was tested. Dynorphin-(1-13) (IC50: 0.14 microM), human beta-endorphin-(1-31) (IC50: 15.5 microM), porcine ACTH-(1-39) (IC50: 6.3 microM), and substance P (IC50: 26 microM) had an inhibitory activity on gamma EGE activity. beta-Endorphin-(18-31) (IC50: 0.35 microM) but not gamma-endorphin potently inhibited gamma EGE activity. The IC50 of poly (Lys)40-60 was 0.8 microM. It is concluded that 1) gamma EGE activity is strongly inhibited by its product beta-endorphin-(18-31), 2) the enzyme is strongly inhibited by peptides with an aromatic amino acid at the NH2-terminal and/or basic amino acids in the COOH-terminal of the peptide chain.  相似文献   

9.
M Ikura  G Barbato  C B Klee  A Bax 《Cell calcium》1992,13(6-7):391-400
The solution structure of Ca2+ ligated calmodulin and of its complex with a 26-residue peptide fragment of skeletal muscle myosin light chain kinase (skMLCK) have been investigated by multi-dimensional NMR. In the absence of peptide, the two globular domains of calmodulin adopt the same structure as observed in the crystalline form. The so-called 'central helix' which is observed in the crystalline state is disrupted in solution. 15N relaxation studies show that residues Asp78 through Ser81, located near the middle of this 'central helix', form a very flexible link between the two globular domains. In the presence of skMLCK target peptide, the peptide-protein complex adopts a globular ellipsoidal shape. The helical peptide is located in a hydrophobic channel that goes through the center of the complex and makes an angle of approximately 45 degrees with the long axis of the ellipsoid.  相似文献   

10.
A calmodulin-binding peptide of caldesmon   总被引:4,自引:0,他引:4  
Caldesmon is a major actin-binding protein identified in smooth muscle and many non-muscle cells. It also interacts with calmodulin and a number of other acidic proteins. We have shown previously that the polypeptide stretch from Val629 to Ser666 near the C terminus contains a calmodulin binding site (Wang, C.-L. A., Wang, L.-W. C., Xu, S., Lu, R. C., Saavedra-Alanis, V., and Bryan, J. (1991) J. Biol. Chem. 266, 9166-9172). On the other hand, Bartegi et al. (Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) reported a cyanogen bromide fragment beginning at Trp659 which is also capable of binding both calmodulin and actin. A comparison of the overlapping sequence between these two peptides suggests that this calmodulin binding site is localized in a 7-residue segment, 659Trp-Glu-Lys-Gly-Asn-Val-Phe665. We have chemically synthesized an 18-residue peptide (GS17C, from Gly651 to Ser667 with an added cysteine at the C terminus) that contains this segment. This peptide was purified by high performance liquid chromatography and labeled with fluorescent probes at the terminal cysteine residue. We found that GS17C indeed binds calmodulin in a Ca(2+)-dependent manner (Kd = 8 x 10(-7) M) and appears to compete with caldesmon. Interestingly, this synthetic peptide also co-sediments with F-actin, binding to actin being displaceable by calmodulin, as in the case of the native caldesmon. But GS17C does not have any effect on the actomyosin ATPase activity, indicating that this peptide segment does not contain the inhibitory region.  相似文献   

11.
In order to elucidate the role of the N-terminus of insulin-like growth factor 1 (IGF-1) with respect to its biological properties, we chemically synthesized analogues of IGF-1 truncated by one to five amino acid residues from the N-terminus. In a bioassay that measured the stimulation of protein synthesis in rat L6 myoblasts, the concentrations required to produce a half-maximal response were: IGF-1, 13 ng/ml; des-(1)-IGF-1, 10 ng/ml; des-(1-2)-IGF-1, 13 ng/ml; des-(1-3)-IGF-1, 1.5 ng/ml; des-(1-4)-IGF-1, 5.1 ng/ml; des-(1-5)-IGF-1, 1200 ng/ml. When tested for their abilities to compete with 125I-IGF-1 binding to L6 myoblasts at 3 degrees C, the concentrations required for 50% competition were: IGF-1, des-(1)-IGF-1 and des-(1-2)-IGF-1, 20 ng/ml; des-(1-3)-IGF-1, 14 ng/ml; des-(1-4)-IGF-1, 40 ng/ml; des-(1-5)-IGF-1, greater than 1000 ng/ml. Receptor-binding experiments at 25 degrees C, however, gave results suggesting that the myoblasts were secreting a binding protein selective for the three longest peptides. This interpretation was confirmed by binding studies with medium conditioned by the L6 myoblasts as well as binding protein purified from MDBK-cell-conditioned medium. In both cases IGF-1, des-(1)-IGF-1 and des-(1-2)-IGF-1 competed for tracer IGF-1 binding at least 60-fold better than did the three shorter peptides. The results obtained account for the increased potency of des-(1-3)-IGF-1 and des-(1-4)-IGF-1, since their activities are not attenuated by the binding protein, and the relatively lower potency of des-(1-4)-IGF-1 is a consequence of this peptide binding less well to the L6-myoblast receptor.  相似文献   

12.
Our approach to the modeling of beta-endorphin has been based on the proposal that three basic structural units can be distinguished in the natural peptide hormone: a highly specific opiate recognition sequence at the N terminus (residues 1-5) connected via a hydrophilic link (residues 6-12) to a potential amphiphilic helix in the C-terminal residues 13-31. Our previous studies showed the validity of this approach and have demonstrated the importance of the amphiphilic helical structure in the C terminus of beta-endorphin. The present model, peptide 5, has been designed in order to evaluate further the requirements of the amphiphilic secondary structure as well as to determine the importance of this basic structural element as compared to more specific structural features which might occur in the C-terminal segment. For these reasons, peptide 5 retains the three structural units previously postulated for beta-endorphin; the major difference with regard to previous models is that the whole C-terminal segment, residues 13-31, has been built using only D-amino acids. In aqueous buffered solutions as well as in 2,2,2-trifluoroethanol-containing solutions, the CD spectra of peptide 5 show the presence of a considerable amount of left-handed helical structure. Enzymatic degradation studies employing rat brain homogenate indicate that peptide 5 is stable in this milieu. In delta- and mu-opiate receptor-binding assays, peptide 5 shows a slightly higher affinity than beta-endorphin for both receptors while retaining the same delta/mu selectivity. In opiate assays on the guinea pig ileum, the potency of peptide 5 is twice that of beta-endorphin. In the rat vas deferens assay, which is very specific for beta-endorphin, peptide 5 displays mixed agonist-antagonist activity. Most remarkably, peptide 5 displays a potent opiate analgesic effect when injected intracerebroventricularly into mice. At equal doses, the analgesic effect of peptide 5 is less than that of beta-endorphin (10-15%) but longer lasting. In conjunction with our previous model studies, these results clearly demonstrate that the amphiphilic helical structure in the C terminus of beta-endorphin is of predominant importance with regard to activity in rat vas deferens and analgesic assays. The similarity between the in vitro and in vivo opiate activities of beta-endorphin and peptide 5, when compared to the drastic change in chirality in the latter model, demonstrates that even a left-handed amphiphilic helix formed by D-amino acids can function satisfactorily as a structural unit in a beta-endorphin-like peptide.  相似文献   

13.
A new photoreactive amino acid analog, p-benzoyl-L-phenylalanine, is described. Convenient methods for the preparation of this amino acid and its subsequent incorporation into synthetic peptides by the solid-phase technique are outlined. To illustrate its utility, p-benzoyl-L-phenylalanine was substituted in place of tryptophan in a 17-residue calmodulin-binding peptide. The substitution did not measurably affect the affinity of this peptide for calmodulin. When this peptide was photolyzed at 350 nm in a 1:1 molar ratio with calmodulin in the presence of 500 microM CaCl2, 70% of the calmodulin was derivatized. The specificity of the reaction was investigated by photolysis in the absence of CaCl2 where little binding occurs; under these conditions little or no photolabeling occurred.  相似文献   

14.
Glucagon-like peptide-I (GLP-I) is encoded together with glucagon by the glucagon gene and is related in its structure to the glucagon-secretin family of peptides. Three of the predicted forms of the peptide, a 37-residue long GLP-I(1-37), a 31-residue GLP-I(7-37) and a 30-residue GLP-I(7-36)amide as well as three analogs des [Gly37, Arg36] GLP-I(7-37), des [Gly37, Arg36, Gly35] GLP-I(7-37) and des [His7] GLP-I(7-37) were synthesized by the stepwise solid phase method. These synthetic peptides were used to define the structural domains required for the binding of GLP-I to the pancreatic beta cell. The competitive binding experiments showed that both the amino and carboxyl terminal domains of the molecule contribute to GLP-I binding. In these experiments glucagon, another peptide that stimulates insulin secretion, was a weak full agonist of GLP-I binding. Results from these studies provide further characterization of the physiological role of this new peptide.  相似文献   

15.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

16.
Fodrin (brain spectrin) binds calmodulin and is susceptible to proteolysis by calcium-dependent protease I (CDP-I, calcium-activated neutral protease I, or calpain I). Both events involve the central region of the alpha-fodrin subunit, and calmodulin binding enhances the sensitivity of fodrin to CDP-I mediated proteolysis. Fragments of fodrin, generated chemically or proteolytically, which retain calmodulin binding activity have been identified and analyzed by two-dimensional peptide mapping and by direct protein sequencing. Both CDP-I and calmodulin interact with the terminal portion of the eleventh repetitive unit in fodrin, which is at the center of the molecule. CDP-I cleavage occurs between Tyr104 and Gly105 and preserves the calmodulin binding activity of the carboxyl-terminal fragment. In contrast, chymotryptic cleavage at Trp120 reduces the ability of this fragment to bind calmodulin, and tryptic cleavage beyond Trp120 completely eliminates calmodulin binding activity. It is concluded that Ser-Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala- Thr- Phe-Asn-Ser-Ile-Lys, a 24-residue peptide which bridges repeats 11 and 12 of brain alpha spectrin contains the high affinity calmodulin binding domain.  相似文献   

17.
We have determined the amino acid sequence of a 35 kDa proteolytic fragment ("CaD35") derived from the C-terminus of turkey gizzard caldesmon. This 239-residue peptide contains binding sites for actin and calmodulin. Residues 1-96 of CaD35 comprise "CaD15", an actin-binding subfragment which we previously showed to resemble the tropomyosin-binding segment of troponin T. The remainder of the CaD35 sequence shows no significant similarity to other proteins. Residues 111-128 may form a basic, amphipathic helix which interacts with calmodulin.  相似文献   

18.
Peptides corresponding to the amino terminal region of pardaxin from Pardachirus pavoninus (Gly-Phe-Phe-Ala-Leu-Ile-Pro-Lys-Ile-Ile-Ser-Ser-Pro-Leu-Phe) have been synthesized and their interaction with model membranes of phosphatidyl choline and serine studied by 90 degrees C light scattering and fluorescence spectroscopy. The amino terminal 8-residue peptide and the protected 15-residue peptide cause only aggregation of lipid vesicles. The deprotected 15-residue peptide has the ability to cause aggregation and release of entrapped carboxyfluorescein with both phosphatidyl choline and serine lipid vesicles, like pardaxin. The membrane-perturbing ability of the amino terminal 15-residue peptide can be attributed to its ability to adopt an alpha-helical conformation which is amphiphilic in nature in a hydrophobic environment.  相似文献   

19.
Many different enzymes are activated by direct interaction with calmodulin; this interaction is thought to occur through a distinct calmodulin-binding domain in each of these enzymes. We have recently reported the sequence of a 27-residue peptide (denoted M13), derived from skeletal muscle myosin light chain kinase (MLCK), that exhibits the properties expected of a calmodulin-binding domain [Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., & Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191]. The interaction between chemically synthesized M13 peptide and calmodulin has been studied by circular dichroism (CD) and proton nuclear magnetic resonance (NMR) spectroscopy. In the presence of Ca2+, the observed ellipticity of an equimolar mixture of M13 and calmodulin is much greater than the sum of the ellipticities of the two isolated proteins. In the absence of Ca2+, the measured ellipticity of the mixture is approximately the sum of the two components. Addition of the peptide to calmodulin causes dramatic changes in the proton NMR spectrum; at a 1:1 molar ratio, no evidence of either free peptide or free calmodulin is observed. Moreover, these data demonstrate that a unique species of the M13-calmodulin complex is formed, indicating that the peptide binds to calmodulin in only one way. The many resonances affected by M13 binding include residues in both halves of the calmodulin molecule. The observed CD and NMR effects suggest that secondary and tertiary conformational changes occur both in M13 and in calmodulin upon complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Three chymotryptic fragments accounting for almost the entire amino acid sequence of gizzard calponin (Takahashi, K., and Nadal-Ginard, B. (1991) J. Biol. Chem. 266, 13284-13288) were isolated and characterized. They encompass the segments of residues 7-144 (NH2-terminal 13-kDa peptide), 7-182 (NH2-terminal 22-kDa peptide), and 183-292 (COOH-terminal 13-kDa peptide). They arise from the sequential hydrolysis of the peptide bonds at Tyr182-Gly183 and Tyr144-Ala145 which were protected by the binding of F-actin to calponin. Only the NH2-terminal 13- and 22-kDa fragments were retained by immobilized Ca(2+)-calmodulin, but only the larger 22 kDa entity cosedimented with F-actin and inhibited, in the absence of Ca(2+)-calmodulin, the skeletal actomyosin subfragment-1 ATPase activity as the intact calponin. Since the latter peptide differs from the NH2-terminal 13-kDa fragment by a COOH-terminal 38-residue extension, this difference segment appears to contain the actin-binding domain of calponin. Zero-length cross-linked complexes of F-actin and either calponin or its 22-kDa peptide were produced. The total CNBr digest of the F-actin-calponin conjugate was fractionated over immobilized calmodulin. The EGTA-eluted pair of cross-linked actin-calponin peptides was composed of the COOH-terminal actin segment of residues 326-355 joined to the NH2-terminal calponin region of residues 52-168 which seems to contain the major determinants for F-actin and Ca(2+)-calmodulin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号