首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmolysed chloramphenicol-treated Escherichia coli cells carrying the colicinogenic factor E1 utilize deoxynucleoside triphosphates for the semi-conservative synthesis of Col E1 DNA. Col E1 DNA replication in plasmolysed cells can be dissociated into two temporally separated processes: (a) a rifampicin-sensitive RNA synthesis, which is stimulated by adenosine 3':5'-monophosphate (cyclic AMP) and requires all four ribonucleoside triphosphates and (b) an ATP-dependent DNA synthesis, which is inhibited by arabinosylnucleoside triphosphates and sulfhydryl-blocking reagents. Thes two processes exhibit different sensitivities to inhibition by polyamines and actinomycin D.  相似文献   

2.
The influence of ribonucleic acid (RNA) and protein synthesis on the replication of the cloacinogenic factor Clo DF13 was studied in Escherichia coli cells and minicells. In chromosomeless minicells harboring the Clo DF13 factor, Clo DF13 deoxyribonucleic acid (DNA) synthesis is slightly stimulated after inhibition of protein synthesis by chloramphenicol or puromycin and continues for more than 8 h. When minicells were treated with rifampin, a specific inhibitor of DNA-dependent RNA polymerase, Clo DF13 RNA and DNA synthesis appeared to stop abruptly. In cells, the Clo DF13 factor continues to replicate during treatment with chloramphenicol long after chromosomal DNA synthesis ceases. When rifampin was included during chloramphenicol treatment of cells, synthesis of Clo DF13 plasmid DNA was blocked completely. Isolated, supercoiled Clo DF13 DNA, synthesized in cells or minicells in the presence of chloramphenicol, appeared to be sensitive to ribonuclease and alkali treatment. These treatments convert a relatively large portion of the covalently closed Clo DF13 DNA to the open circular form, whereas supercoiled Clo DF13 DNA, isolated from non-chloramphenicol-treated cells or minicells, is not significantly affected by these treatments. These results indicate that RNA synthesis and specifically Clo DF13 RNA synthesis are involved in Clo DF13 DNA replication and that the covalently closed Clo DF13 DNA, synthesized in the presence of chloramphenicol, contains one or more RNA sequences. De novo synthesis of chromosomal and Clo DF13-specific proteins is not required for the replication of the Clo DF13 factor. Supercoiled Clo DF13 DNA, isolated from a polA107 (Clo DF13) strain which lacks the 5' --> 3' exonucleolytic activity of DNA polymerase I, is insensitive to ribonuclease or alkali treatment, indicating that in this mutant the RNA sequences are still removed from the RNA-DNA hybrid.  相似文献   

3.
Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affect the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C.  相似文献   

4.
In vitro incorporation of [Me-3H] thymidine and [5-3H] uridine into human platelets was demonstrated. Thymidine incorporation was inhibited by three specific inhibitors of DNA synthesis: hydroxyurea, cytosine arabinoside and daunomycin. The effect was dose-dependent. Uridine uptake by platelets was found to be inhibited by specific inhibitors of RNA synthesis such as actinomycin D, rifampicin and vincristine, the effect of actinomycin D being dose dependent. The drug also led to a time-dependent inhibition of protein synthesis when preincubated with platelets. The platelet RNA profile on polyacrylamide gel was demonstrated to be similar to that of embryonic mouse erythroblast RNA. Synthesis of all three fractions, 28 S, 18 S and 4 S, was inhibited by actinomycin D. These findings show that human platelets are capable of DNA and RNA synthesis, and that these activities play a role in controlling protein synthesis in these cells. Detectable amounts of DNA have been found in whole human platelets, and in isolated mitochondria derived from these cells. Isolated platelet mitochondria incorporated [3H] thymidine and [3H] uridine into their macromolecules. These activities were inhibited by daunomycin and by both rifampicin and actinomycin D, respectively. These results support the assumption that DNA and RNA synthesis found in intact cell preparations takes place most probably in platelet mitochondria.  相似文献   

5.
6.
7.
The effect of low chloramphenicol concentrations on the biosynthesis of RNA, ribosomal proteins and RNA polymerase in E. coli CP 78 cells was studied. When protein synthesis was decreased by 50--70%, 14C-uracil incorporation in DNA increased twice, the rRNA synthesis being stimulated preferentially. In the presence of antibiotic the RNA/DNA ratio increased from 5,7 to 13,3. The differential rate of r-protein synthesis increased simultaneously with the stimulation of rRNA synthesis, so that alphar rises from 0,083 (without antibiotic) to 0,122 and 0,161 at 5 and 10 microgram/ml of chloramphenicol, respectively. The inhibition of protein synthesis by chloramphenicol is accompanied also by the increase of differential rate of synthesis of beta and beta' subunits of RNA polymerase. In the presence of 5 and 10 microgram/ml of chloramphenicol, alphap increased from 0,90% to 1,44 and 1,57%, respectively. It is assumed that the genes for beta and beta' subunits of RNA polymerase as the ribosomal genes are negatively controlled by guanosine tetraphosphate which intracellular concentration decreased in the presence of chloramphenicol. The known data on the influence of streptolydigin and rifampicin on the RNA polymerase biosynthesis are discussed in view of proposed hypothesis.  相似文献   

8.
Protoplasts of Bacillus subtilis plated on SDG medium formed L colonies in quantative yield and propagated in the L-form indefinitely. Protoplasts or L bodies placed in 25% gelatin medium formed bacillary colonies. Details of the reversion of these naked bodies to the walled form are reported here. Protoplasts prepared in minimal medium reverted fairly synchronously 3 to 4 hr after inoculation into gelatin, but protoplasts preincubated in casein hydrolysate (CH)-enriched minimal medium were primed to revert within 1 hr in the gelatin. Preincubation for 1.5 hr in 0.44% CH was required for good priming. Cells must be subjected to this preincubation (step 1) in the naked state; it is effective for L bodies as well as protoplasts. Priming was blocked by chloramphenicol, puromycin, and actinomycin D but was not affected by penicillin, lysozyme, or inhibition of deoxyribonucleic acid (DNA) synthesis. It is concluded that protein and ribonucleic acid (RNA) synthesis are required during step 1, that DNA synthesis is not required, and that wall mucopeptide is not made. The reversion of well-primed protoplasts in the gelatin (step 2) proceeded undisturbed in thymine-starved cells with chromosomes arrested at the terminus. It was scarcely slowed by chloramphenicol in the gelatin but was delayed about 3 hr by both puromycin and actinomycin D. Escape from inhibition occurred while the inhibitors were still actively blocking growth. Penicillin and cycloserine inhibited and lysozyme reversed reversion. Momentary melting of the gelatin delayed reversion. It is concluded that mucopeptide synthesis occurs in step 2, that concomitant RNA, DNA, or protein synthesis is not essential, but that physical immobilization of excreted cell products at the protoplast surface is necessary early in step 2. Newly reverted cells were misshapen and osmotically sensitive. Processes which confer osmotic stability after reversion (step 3) did not occur in the presence of chloramphenicol or actinomycin D.  相似文献   

9.
10.
The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 mug/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 mug/ml), tetracycline (0.5 mug/ml), puromycin (25 mug/ml), or 5-azacytidine (5 mug/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 mug/ml) and rifampin (0.01 mug/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis.  相似文献   

11.
12.
The effects of inhibition of protein and RNA synthesis on initiation of chromosome replication in Escherichia coliBr were determined by measuring rates of DNA synthesis during the division cycle before and after addition of chloramphenicol and rifampicin. The ability of cells to initiate a round of replication depended upon the pattern of chromosome replication during the division cycle. Initiation in the presence of chloramphenicol (200 μ/ml) and rifampicin (100 gmg/ml) was observed only in slowly growing cells which normally initiated a new round between the end of the previous round and the subsequent division (i.e. in the D period of the division cycle). The cells that initiated were in the D period at the time of addition of the drugs. Rapidly growing cells which normally initiated before the D period and slowly growing cells which normally initiated after the D period did not initiate in the presence of the drugs. The contrasting effects of the drugs in cells possessing different chromosome replication patterns, and the coupling between septum-crosswall formation (the D period) and initiation suggest that the timing of initiation of chromosome replication in E. coli is controlled by the cell envelope.  相似文献   

13.
14.
Neither bacteriophage ?X174 single-stranded DNA synthesis nor phage growth was affected by rifampicin (200 μg/ml) once it started, whereas a low concentration of chloramphenicol (30 μg/ml) inhibited the phage growth when added in a late phase of infection. When rifampicin was added at a stage where double-stranded duplex (RF) DNA replication proceeded preferentially in the presence of chloramphenicol, or even after chloramphenicol was removed before the addition of rifampicin, both single-stranded DNA synthesis and phage growth were inhibited. These results suggest that RNA synthesis sensitive to rifampicin was necessary to initiate single-stranded DNA synthesis, but no longer needed once ?X174 DNA synthesis started.  相似文献   

15.
We determined the effects of noninfective reovirus components on cellular deoxyribonucleic acid (DNA) synthesis. Reovirus inactivated by ultraviolet light inhibited cellular DNA synthesis, whereas reovirus cores and empty capsids did not. Both cores and empty capsids were adsorbed to cells. Adenine-rich ribonucleic acid (RNA) from reovirus, adsorbed to cells in the presence of diethyl-aminoethyl-dextran, produced a partial inhibition of DNA synthesis. RNA was synthesized in the presence of actinomycin D after infection with ultraviolet light-irradiated reovirus, and this RNA synthesis was not due to multiplicity reactivation of virus infectivity. These data suggest that viral structural proteins do not inhibit DNA synthesis and that the inhibition produced by ultraviolet-irradiated virus may be mediated in part or in toto by a newly synthesized viral product.  相似文献   

16.
The rates of RNA, protein and DNA synthesis were estimated in synchronously germinating spores ofStreptomyces granaticolor. Rapid uptake of labelled precursors of RNA and proteins was observed after 20 s. The germination process took place through a sequence of time + ordered events. RNA synthesis started after 3 min of germination, protein synthesis began at 4 min and net DNA synthesis at 60–70 min of germination. A characteristic feature of germination was the biphasic pattern in the rate of RNA and protein synthesis. Spores ofStreptomyces granaticolor were sensitive to actinomycin D, rifampicin and chloramphenicol even at the start of germination. Protein synthesis during germination was dependent on new mRNA synthesis and was independent during the first 60–70 min on replication of the spore genome.  相似文献   

17.
Actinomycin D (0.008 μg/gm of body weight) injected intraperitoneally every two hours, produced a prompt 50% inhibition of RNA synthesis in the jejunum of mice, and a delayed inhibition of DNA synthesis, that reached its maximum inhibition (68% of control values) 4.5 hours after the first injection of actinomycin D. Autoradiographic studies indicated that this low level of actinomycin D inhibited a step in the G1 phase of the cell cycle, preventing the initiation, but not affecting the continuation, of DNA biosynthesis. The activity of DNA polymerase was not affected under these conditions. The results are substantially similar to those previously obtained with Ehrlich ascites cells growing in the peritoneal cavity of mice and can be interpreted as indicating that in the G1 phase of dividing cells there is an actinomycin sensitive step whose inhibition prevents the entrance of cells into the DNA-synthesis phase.  相似文献   

18.
The effects of rifampin and chloramphenicol on the transfer of ColIdrd-1 have been examined to determined whether transfer requires the synthesis of an untranslated species of ribonucleic acid (RNA), as proposed in models for the transfer of another IncIalpha plasmid, R64drd-11. When RNA synthesis was inhibited throughout mating by rifampin, ColI transfer between dna+ bacteria occurred at the normal rate for about 10 min and then stopped abruptly. Conjugational deoxyribonucleic acid (DNA) synthesis in dnaB mutants indicates that plasmid DNA was made in the rifampin-treated donors to replace the transferred material but the DNA tended to be unstable. In the presence of chloramphenicol, transfer of ColI gradually diminished over a longer period. Rifampin, but not chloramphenicol, was found to have unpredicted effects on chromosomal DNA metabolism in unmated dna+ and dnaB bacteria when they harbor any of three IncIalpha plasmids (ColIdrd-1, R144drd-3, and R64drd-11). Replication of the bacterial chromosome in such cells stopped abruptly about 15 min after the addition of rifampin, and at 41 degrees C, but not 37 degrees C, this was followed by extensive DNA breakdown. These findings suggest that curtailment of IncIalpha plasmid transfer by the drug results from a general disruption of DNA metabolism rather than from inhibition of a species of RNA essential for transfer.  相似文献   

19.
Supercoiled plasmid molecules sensitive to nicking by RNase or alkali have been shown to accumulate during replication of colicinogenic factor E1 (ColE1) in Escherichia coli in the presence of chloramphenicol. The possibility that this sensitivity is due to the covalent integration of RNA molecules during the synthesis of plasmid DNA is supported by the demonstration that (a) strands of supercoiled ColE1 newly replicated in the presence of chloramphenicol exhibit sensitivity to RNase and alkali treatment, while (b) RNase- and alkali-resistant circular strands of plasmid DNA synthesized either before or after the addition of chloramphenicol remain resistant during subsequent replication of the plasmid in the presence of chloramphenicol. Furthermore, newly made plasmid DNA strands cannot act as templates for further rounds of replication if they possess an RNA segment. The existence of a repair mechanism for the removal of the RNA segment from supercoiled ColE1 DNA molecules was demonstrated by pulse-chase experiments. It was observed that the proportion of RNase-sensitive molecules is considerably higher in pulse-labeled as compared to continuously labeled ColE1 DNA synthesized in the presence of chloramphenicol, and the proportion of pulse-labeled ColE1 DNA that is RNase sensitive is greatly reduced during a chase period. Removal of the RNA segment is also carried out effectively at the restrictive temperature in temperature-sensitive DNA polymerase I mutants. In a survey of other bacterial mutants defective in the repair of damaged DNA, a substantial increase in the rate of accumulation of RNase-and alkali-sensitive supercoiled ColE1 DNA in the presence of chloramphenicol was observed in recBC and uvrA mutants in comparison with the wild-type strains.  相似文献   

20.
Ultraviolet irradiation and actinomycin D impair the capacity of mouse embryo (ME) cells to support the replication of polyoma virus, but not of encephalomyocarditis (EMC) virus. The loss in capacity for polyoma virus synthesis was an “all-or-none” effect and followed closely upon the loss in cellular capacity for clone formation. Cells treated with either agent produced polyoma “T” antigen, but did not synthesize polyoma structural protein. Infection of untreated ME cells with polyoma virus produced marked stimulation of both deoxyribonucleic acid (DNA) synthesis and ribonucleic acid (RNA) synthesis. ME cell cultures irradiated with ultraviolet for 30 sec at 60 μw/cm2 or treated with actinomycin D at 0.1 μg/ml for 6 hr prior to infection were incapable of synthesizing DNA or RNA, even after infection with polyoma virus. Irradiation of cells during infection produced cessation of synthesis of both RNA and DNA. Addition of actinomycin D during infection did not inhibit DNA synthesis but abolished RNA synthesis and reduced the yield of polyoma virus to 10% of that in untreated infected cultures. Both agents lost the ability to prevent replication of a full yield of polyoma virus when administered 30 hr after infection or later. The period after which neither agent inhibited polyoma replication corresponded with the period at which maximal RNA synthesis in untreated infected cultures had subsided. It can be concluded on the basis of the data presented that the functional integrity of the mouse embryo cell genome is required for the replication of polyoma virus, but not for EMC virus. Whereas the requirement for cellular DNA-dependent RNA synthesis for polyoma virus replication has been demonstrated, the exact nature of the host-cell function remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号