首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic effects of 5-azacytidine in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
The base analog 5-azacytidine induced a variety of genetic and epigenetic effects in different organisms. It was tested in two diploid strains of the yeast Saccharomyces cerevisiae to study the induction of point mutation, mitotic reciprocal crossing-over, mitotic gene conversion (strain D7) and mitotic aneuploidy (strain D61.M). It was used on cells growing in its presence for 4-5 generations. There was a strong induction of both types of mitotic recombination and point mutation. However, there was no induction of mitotic chromosomal malsegregation under the same conditions.  相似文献   

2.
A diploid yeast strain D61.M was used to study induction of mitotic chromosomal malsegregation, mitotic recombination and point mutation. Several ketones (including acetone and methyl ethyl ketone) and some organic acid esters (including the methyl, ethyl and 2-methoxyethyl esters of acetic acid) and acetonitrile strongly induced aneuploidy but not recombination or point mutation. Only diethyl ketone induced low levels of recombination and point mutation in addition to aneuploidy. Related compounds were weak inducers of aneuploidy: methyl n-propyl ketone, the methyl esters of propionic and butyric acid, acetic acid esters of n- and iso-propanol and ethyl propionate. No mutagenicity was found with n-butyl and isoamyl acetate, ethyl formate, acetyl acetone (2,5-dipentanone) and dioxane. Methyl isopropyl ketone induced only some recombination and point mutation but no aneuploidy. Efficient induction was only observed with a treatment protocol in which growing cells were exposed to the chemicals during a growth period of 4 h at 28 degrees C followed by incubation in ice for more than 90 min, usually overnight for 16-17 h. Aneuploid cells could be detected in such cultures during a subsequent incubation at growth temperature if the chemical was still present. Detailed analysis showed that there was a high incidence of multiple events of chromosomal malsegregation. It is proposed that the mutagenic agents act directly on tubulin during growth so that labile microtubules are formed which dissociate in the cold. When cells are brought back to temperatures above the level critical for reassembly of tubulin and allowed to grow, faulty microtubules are formed.  相似文献   

3.
In Aspergillus several types of test systems have been developed for detection of chemicals which induce aneuploidy and/or malsegregation of chromosomes. Results from 23 papers were reviewed in which numerical data for 42 chemicals had been reported. The test systems fall into two groups. One group includes all purely genetic tests that detect euploid mitotic segregants from heterozygous diploids and identify these either as products of malsegregation of chromosomes or as products of crossing-over (13 papers, several reviewed in detail previously; K?fer et al. (1982) and Scott et al. (1982)). The other group includes tests that treat haploid or diploid strains and detect aneuploids as unstable abnormally growing segregants which can be identified as specific disomics or trisomics by their characteristic phenotypes. In addition, such tests characterize abnormal segregants from heterozygous diploids by correlating phenotypes with patterns of genetic segregation in spontaneous euploid sectors. This analysis makes it possible to distinguish between induced primary aneuploidy of whole chromosomes and partial tri- or monosomy resulting from chromosome breakage and secondary spontaneous malsegregation (10 papers). Based on results of both types of tests, it is postulated that chemicals which cause increases of euploid malsegregants, but not of crossovers, normally induce aneuploids as primary products (as shown for 7 of the 14 cases). These include compounds which damage spindles or membranes (especially the well-known haploidizing agents) and generally are effective only when growing cells are exposed. (8 chemicals that may belong in this category could not be classified for certain, because information was insufficient.) On the other hand, chemicals which cause increases of all types of euploid segregants (11 cases), mostly induce drastic mutations and aberrations as primary effects and cause spontaneous malsegregation or crossing-over only as secondary events (as demonstrated for radiation-induced abnormals). In addition, a few chemicals were negative, because they increased only crossing-over or showed no increased segregation at all at concentrations which reduced survival or growth rate (9 cases). Recommendations are made for standardization of methods and protocols. New tester strains and specific procedures are outlined which should be useful for conclusive tests of chemicals that may induce aneuploidy.  相似文献   

4.
Zygosaccharomyces bailii ISA 1307 and the type strain of this spoilage yeast show a diploid DNA content. Together with a rather peculiar life cycle in which mitotic but no meiotic spores appear to be formed, the diploid DNA content explains the observed difficulties in obtaining auxotrophic mutants. Mitotic chromosome loss induced by benomyl and selection on canavanine media resulted in three haploid strains of Z. bailii. This new set of Z. bailii strains allows the easy isolation of recessive mutants and is suitable for further molecular genetic studies.  相似文献   

5.
Ectopic recombination in the yeast Saccharomyces cerevisiae has been investigated by examining the effects of mutations known to alter allelic recombination frequencies. A haploid yeast strain disomic for chromosome III was constructed in which allelic recombination can be monitored using leu2 heteroalleles on chromosome III and ectopic recombination can be monitored using ura3 heteroalleles on chromosomes V and II. This strain contains the spo13-1 mutation which permits haploid strains to successfully complete meiosis and which rescues many recombination-defective mutants from the associated meiotic lethality. Mutations in the genes RAD50, SPO11 and HOP1 were introduced individually into this disomic strain using transformation procedures. Mitotic and meiotic comparisons of each mutant strain with the wild-type parental strain has shown that the mutation in question has comparable effects on ectopic and allelic recombination. Similar results have been obtained using diploid strains constructed by mating MATa and MAT alpha haploid derivatives of each of the disomic strains. These data demonstrate that ectopic and allelic recombination are affected by the same gene products and suggest that the two types of recombination are mechanistically similar. In addition, the comparison of disomic and diploid strains indicates that the presence of a chromosome pairing partner during meiosis does not affect the frequency of ectopic recombination events involving nonhomologous chromosomes.  相似文献   

6.
The REC104 gene was initially defined by mutations that rescued the inviability of a rad52 spo 13 haploid strain in meiosis. We have observed that rec104 mutant strains undergo essentially no induction of meiotic gene conversion, and we have not been able to detect any meiotic crossing over in such strains. The REC104 gene has no apparent role in mitosis, since mutations have no observable effect on growth, mitotic recombination, or DNA repair. The DNA sequence of REC104 reveals that it is a previously unknown gene with a coding region of 549-bp, and genetic mapping has localized the gene to chromosome VIII near FUR1. Expression of the REC104 gene is induced in meiosis, and it appears that the gene is not transcribed in mitotic cells. Possible roles for the REC104 gene product in meiosis are discussed.  相似文献   

7.
The state of aneuploidy test methodology was appraised by the U.S. Environmental Protection Agency in 1986 in analyzing published data. In Saccharomyces cerevisiae 9 chemicals were reported to be conclusive positive for aneuploidy induction in either mitotic or meiotic cells. We reevaluated these 9 chemicals using Saccharomyces cerevisiae D61.M, a strain that detects mitotic chromosome malsegregation. Acetone (lowest effective dose (LED): 40 microliters/ml), bavistan (LED: 5 micrograms/ml), benomyl (LED: 30 micrograms/ml) and oncodazole (LED: 4 micrograms/ml) induced a dose-dependent increase in the frequencies of chromosomal malsegregation. Ethyl methanesulfonate (EMS; highest tested dose (HTD): 1000 micrograms/ml) and methyl methanesulfonate (MMS; HTD: 100 micrograms/ml) did not induce malsegregation but were both potent inducers of other genetic events, detected by an increase in the frequencies of cyhR cells. No increases in both endpoints (malsegregation and other genetic events) were observed after treatment of S. cerevisiae D61.M with cyclophosphamide (CP; HTD: 16 mg/ml) in the absence of S9, p-D,L-fluorophenylalanine (p-FPA; HTD: 250 micrograms/ml) and phorbol-12-myristate-13-acetate (TPA; HTD: 50 micrograms/ml). A marginal increase in the frequency of mitotic chromosome malsegregation was obtained with cyclophosphamide in the presence of S9. Thus our test results largely disagree with those previously published by various authors and taken as conclusive by EPA. We interpret the discrepancies to be due to lack of properly controlled testing (e.g., no check for multiple mutational events). Only with a careful test design it is possible to discriminate between chemicals inducing only chromosome loss and no other genetic effects (e.g., acetone, oncodazole), chemicals inducing a variety of genetic damage but no chromosome loss (e.g., EMS, MMS) and chemicals inducing neither chromosome loss nor other genetic events in yeast (e.g., TPA, p-FPA).  相似文献   

8.
The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.  相似文献   

9.
Zygosaccharomyces bailii ISA 1307 and the type strain of this spoilage yeast show a diploid DNA content. Together with a rather peculiar life cycle in which mitotic but no meiotic spores appear to be formed, the diploid DNA content explains the observed difficulties in obtaining auxotrophic mutants. Mitotic chromosome loss induced by benomyl and selection on canavanine media resulted in three haploid strains of Z. bailii. This new set of Z. bailii strains allows the easy isolation of recessive mutants and is suitable for further molecular genetic studies.  相似文献   

10.
Recombinant haploid segregants were recovered in filamentous fungus Aspergillus nidulans (Eidam) G. Winter directly from the heterokaryons instead of diploid segregants (process described earlier as parameiosis). In spite of the reproductive complexity of A. nidulans, parameiosis has only now been observed in this fungus. Since parameiosis was characterized by the occurrence of genetic recombination inside heterokaryotic hyphae, master strains (uvs+) and uvs mutants with high rate of both mitotic exchanges or chromosome nondisjunction were used to form heterokaryons. Two groups of mitotic segregants were recovered directly from heterokaryons--aneuploids and stable haploids. Heterokaryons formed with uvs mutants produced a higher number of parameiotic segregants compared to the heterokaryons formed with uvs+ strains. Segregants were analyzed by nutritional markers, acriflavine resistance and conidial color. Normal meiotic behavior of haploid recombinants was observed.  相似文献   

11.
More than 3000 spontaneous and induced lys2 mutants were obtained in haploid and diploid strains of yeast Saccharomyces. The ability to utilize alpha-aminoadipate was used for lys2 mutant screening. The spontaneous and induced mutation rates were measured in haploid and diploid strains. Mitotic segregation of pho1 marker linked to LYS2 was studied in lys2 mutants obtained in diploid strains. Fertility of diploid lys2 mutants was tested. The conclusion to be drawn from the data presented is that mutations appeared in one of two homologous chromosomes and then segregated by mitotic homozygotization.  相似文献   

12.
Effects of p-aminobenzoic acid (PABA) and of 4-[(2-oxo-3-bornylidene)methyl]-phenyl trimethylammonium methylsulfate (OMM), two components used in sunscreen formulations, on the mutagenicity of UVB irradiation are compared in three genetic assay systems. A haploid strain of Saccharomyces cerevisiae XV185-14C was used to measure reverse mutations at three loci. The diploid strain D5 of Saccharomyces cerevisiae was used to screen for reciprocal mitotic recombination. The induction of forward mutations was measured in Chinese hamster V79 cells. Our results indicate that UVB irradiation induced HGPRT- mutants in V79 cells, reverse mutations in Saccharomyces cerevisiae strain XV185-14C, and mitotic crossing over and other genetic alterations in Saccharomyces cerevisiae strain D5. V79 Chinese hamster lung cells were the most sensitive to UVB irradiation, followed by Saccharomyces cerevisiae haploid strain XV185-14C and the diploid strain D5. PABA and OMM were both capable of protecting all three types of cells from UVB irradiation regarding both lethality and induction of various types of genetic alterations. At higher concentrations (above 10(-5) M), OMM was more effective in its photoprotective effect toward UVB irradiation than PABA.  相似文献   

13.
E K?fer 《Mutation research》1988,201(2):385-399
The possibility of more than 1 target for genotoxic effects of methyl methanesulphonate (MMS) was investigated, using mitotic test systems of the fungus Aspergillus. Haploid and diploid strains were exposed, either as dormant conidia or during mitosis, and analysed for induced aneuploidy and effects on genetic segregation. MMS treatment of haploid strains resulted in dose-dependent increases of stable mutants with altered phenotypes and semi-stable unbalanced aberrations (presumably duplications). In addition, but only in dividing cells, MMS induced unstable aneuploids. These mostly were hyperhaploid with few extra chromosomes and could be identified by comparison with standard disomic phenotypes. When well-marked diploids were treated 3 types of effect could be distinguished, using genetic and phenotypic criteria: (1) Clastogenic and mutagenic effects which caused dose-dependent increases of partial aneuploids with various abnormal phenotypes. These showed secondary genetic segregation of all types and produced euploid normal sectors by eliminating damaged chromosome segments. In addition, but only in dividing nuclei, MMS induced 2 types of segregation: (2) Reciprocal crossing-over at high frequency, recognisable as half or quarter colonies of mutant colour and in some cases as 'twin spots' (i.e., complementary pairs); (3) Trisomics and other aneuploids which showed characteristic phenotypes and expected segregation of markers: the types recovered indicate random malsegregation of chromosomes (occasional deviations resulted from coincidence with induced crossing-over). These results suggest that MMS may have 2 (or more) targets for genotoxic effects: DNA, as evident from induced mutations and aberrations, and from induced recombination in dividing cells; some non-DNA target (nucleotide or protein) essential for nuclear division and susceptible to alkylation, resulting in malsegregation and primary aneuploidy.  相似文献   

14.
15.
A microbial fluctuation test, modified for the detection of environmental mutagens has been evaluated using a number of strains of the yeast Saccharomyces cerevisiae. Auxotrophic diploid cultures of yeast which produce prototrophic colonies by both mitotic gene conversion and mutation have been extensively utilized for the detection and evaluation of chemicals showing genetic activity. A number of the yeast strains utilized were shown to be suitable for use in the fluctuation test although the time scales of the experiments were considerably extended (up to 16 days) compared to those involving bacteria. The yeast strains respond to doses of mutagens at least a 100-fold lower than that required in a conventional short exposure treat and plate experiment. In experiments involving the induction of mitotic gene conversion at the tryptophan-5 and histidine-4 loci in the fluctuation test significant increases in prototrophic cells were produced in the presence of the insecticide Lindex (0.05 microng/ml), the preservative Thiomersal (0.0001 microng/ml), a mahogany hair dye (0.01 microng/ml), the herbicide Paraquat (0.02 microng/ml) and the alkylating agent ethyl methane sulphonate (0.1 microng/ml). The results demonstrate that the fluctuation test provides an extremely sensitive assay for the detection of chemicals which show genetic activity in yeast at non-toxic concentrations.  相似文献   

16.
I V Fedorova  S V Marfin 《Genetika》1982,18(2):207-214
The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.  相似文献   

17.
Meiosis is the process by which diploid germ cells divide to produce haploid gametes for sexual reproduction. The process is highly conserved in eukaryotes, however the recent availability of mouse models for meiotic recombination has revealed surprising regulatory differences between simple unicellular organisms and those with increasingly complex genomes. Moreover, in these higher eukaryotes, the intervention of physiological and sex-specific factors may also influence how meiotic recombination and progression are monitored and regulated. This review will focus on the recent studies involving mouse mutants for meiosis, and will highlight important differences between traditional model systems for meiosis (such as yeast) and those involving more complex cellular, physiological and genetic criteria.  相似文献   

18.
Campbell DA 《Genetics》1973,74(2):243-258
Mitotic recombination in Saccharomyces cerevisiae was examined by means of experiments in which one of the haploid parents was X-irradiated prior to zygote formation. By this method radiation-induced lesions are restricted to only one of the two non-sister chromatids that may be expected to undergo mitotic exchange in the diploid. The principal results of this work are: (1) X-irradiated haploid cells that are incapable of further vegetative growth (colony formation) are efficiently rescued into viable diploids by mating with unirradiated haploid cells. (2) X-rays delivered to only one of the two haploid parents are recombinogenic in the resultant diploid. The frequency of detected recombinational events increases as a probable linear function of the X-ray dose. (3) A majority of the induced recombinational events are nonreciprocal in nature (mitotic gene conversion). These results complement those obtained from X-irradiation of the vegetative diploid itself, where the induced genetic exchanges are principally reciprocal.  相似文献   

19.
Several systems have been evaluated for their ability to detect aneuploidy. Chromosome gain can be detected in mitotic haploid cells as well as meiotically derived haploid spores. Both chromosome gain and loss are detectable in mitotic diploid cells. Several chemicals have been identified that clearly induce aneuploidy in at least one or more of the systems.  相似文献   

20.
Cryptococcus neoformans is an opportunistic human pathogenic fungus with a defined sexual cycle. Clinical and environmental isolates of C. neoformans are haploid, and the diploid stage of the lifecycle is thought to be transient and unstable. In contrast, we find that diploid strains are readily obtained following genetic crosses of congenic MATalpha and MATa strains. At 37 degrees C, the diploid strains grow as yeast cells with a single nucleus that is larger than a haploid nucleus, contains a 2n content of DNA by FACS analysis, and is heterozygous for the MATalpha and MATa loci. At 24 degrees C, these diploid self-fertile strains filament and sporulate, producing recombinant haploid progeny in which meiotic segregation has occurred. In contrast to dikaryotic filament cells that are typically linked by fused clamp connections during mating, self-fertile diploid strains produce monokaryotic filament cells with unfused clamp connections. We also show that these diploid strains can be transformed and sporulated and that an integrated selectable marker segregates in a mendelian fashion. The diploid state could play novel roles in the lifecycle and virulence of the organism and can be exploited for the analysis of essential genes. Finally, the observation that dimorphism is thermally regulated suggests similarities between the lifecycle of C. neoformans and other thermally dimorphic human pathogenic fungi, including Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Paracoccidioides brasiliensis, and Sporothrix schenkii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号