首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diverse studies of three cytoplasmic proteins of Escherichia coli--SecB, trigger factor and GroEL--have suggested that they can maintain precursor proteins in a conformation which is competent for membrane translocation. These proteins have been termed 'chaperones'. Using purified chaperone proteins and precursor protein substrates, we find that each of these chaperones can stabilize proOmpA for translocation and for the translocation-ATPase. These chaperones bind to proOmpA to form isolable complexes. SecB and GroEL will also form complexes with another exported protein, prePhoE. In contrast, these chaperones do not form stable complexes with a variety of soluble proteins such as SecA protein, bovine serum albumin, ovalbumin or ribonuclease A. While chaperones may transiently interact with soluble proteins to catalyze their folding, the stable interaction between chaperones and presecretory proteins, maintaining an open conformation which is essential for translocation, may commit these proteins to the secretion pathway.  相似文献   

2.
R Lill  E Crooke  B Guthrie  W Wickner 《Cell》1988,54(7):1013-1018
Trigger factor is a soluble, 63,000 dalton protein of E. coli that stabilizes proOmpA, the precursor form of a major outer-membrane protein, in a conformation competent for in vitro membrane assembly. There is approximately one trigger factor molecule bound to each 70S ribosome isolated from cell extracts in physiological buffers. Trigger factor dissociates from ribosomes in 1.5 M LiCl and reassociates with salt-washed ribosomes in low-salt buffer. Binding is exclusively to the 50S (large) subunit, known to contain the exit domain for nascent polypeptide chains. In addition to its associations with proOmpA and ribosomes, excess trigger factor can compete with the proOmpA-trigger factor complex for a limited number of membrane sites that are essential for translocation of proOmpA. These data suggest a model of trigger factor cycling between the cytoplasm, the ribosome, presecretory proteins, and membrane receptor proteins.  相似文献   

3.
Escherichia coli protein export involves cytosolic components termed molecular chaperones which function to stabilize precursors for membrane translocation. It has been suggested that chaperones maintain precursor proteins in a loosely folded state. We now demonstrate that purified proOmpA in its translocation component conformation contains both secondary and tertiary structure as analyzed by circular dichroism and intrinsic tryptophan fluorescence. Association with one molecular chaperone, SecB, subtly modulates the conformation of proOmpA and stabilizes it by inhibiting aggregation, permitting its translocation across inverted E.coli inner membrane vesicles. These results suggest that translocation competence does not simply result from the maintenance of an unfolded state and that molecular chaperones can stabilize precursor proteins by inhibiting their oligomerization.  相似文献   

4.
We have reconstituted protein translocation across plasma membrane vesicles of Escherichia coli using purified proOmpA and trigger factor, a 63 kd soluble protein. Treatment of membrane vesicles with urea inactivates them for translocation unless a factor present in cytoplasmic extracts is added during the translocation reaction. Sedimentation analysis showed that the stimulatory activity is of distinctly higher mol. wt than trigger factor. Cytoplasmic extracts from a strain that greatly overproduces the SecA protein are highly enriched in the stimulatory activity for untreated membranes and restore translocation to urea-treated membranes, suggesting that this protein is the stimulatory factor. This assay was used to monitor the isolation of SecA protein from the overproducing strain. The purified protein is soluble, yet binds peripherally to membranes with high affinity and supports translocation. Using pure proOmpA, SecA protein, trigger factor and urea-treated membranes, the protein export process was resolved into binding and translocation steps. We find that proOmpA binds to membrane vesicles with or without SecA protein, but that translocation only occurs when SecA was bound prior to proOmpA.  相似文献   

5.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

6.
E Crooke  B Guthrie  S Lecker  R Lill  W Wickner 《Cell》1988,54(7):1003-1011
We have isolated large amounts of E. coli outer-membrane protein A precursor (proOmpA). Purified proOmpA is active in membrane assembly, and this assembly is saturable with respect to the precursor protein. A proOmpA-Sepharose matrix allows affinity isolation of trigger factor, a soluble, 63,000 dalton monomeric protein that stabilizes proOmpA in assembly competent form. Comparison of trigger factor's amino-terminal sequence with those in a computer data bank and with those encoded by sec genes, as well as groEL and heat shock gene dnaK, suggests that trigger factor is encoded by a previously undescribed gene. Trigger factor and proOmpA form a 1:1 complex that can be isolated by gel filtration. Purified canine signal recognition particle (SRP) can also stabilize proOmpA for membrane insertion. This postribosomal activity of SRP suggests a unifying theme in protein translocation mechanisms.  相似文献   

7.
P Sanz  D I Meyer 《The EMBO journal》1988,7(11):3553-3557
When affinity-purified proOmpA was diluted out of 8 M urea into a sample of yeast microsomes, it was translocated and processed in the absence of any cytosolic factors; an intact membrane and ATP were the only requirements. The translocation competence of proOmpA was lost, however, during a 15-h incubation at 0 degrees C. The competence was retained when trigger factor and a yeast cytosolic extract were present during incubations at 0 degrees C. The same reactions were carried out with affinity-purified prepro-alpha-factor, and the same results were obtained with the exception that trigger factor was not required. When the various cytosolic factors were replaced with SRP, the addition of yeast microsomes after 15 h resulted in the translocation and processing (and glycosylation) of both proOmpA and prepro-alpha-factor. Pancreatic microsomes were also used in this type of assay, and it was found that proOmpA (but not prepro-alpha-factor) could be translocated when diluted out of urea. In this case, as with yeast microsomes, translocation competence was maintained by SRP. These results show that in addition to a recognition and targeting function, SRP can stabilize the translocation-competent conformation of pre-secretory proteins in vitro for translocation across eukaryotic membranes.  相似文献   

8.
Bacterial protein export requires two forms of energy input, ATP and the membrane electrochemical potential. Using an in vitro reaction reconstituted with purified soluble and peripheral membrane components, we can now directly measure the translocation-coupled hydrolysis of ATP. This translocation ATPase requires inner membrane vesicles, SecA protein and translocation-competent proOmpA. The stimulatory activity of membrane vesicles can be blocked by either antibody to the SecY protein or by preparing the membranes from a secY-thermosensitive strain which had been incubated at the non-permissive temperature in vivo. The SecA protein itself has more than one ATP binding site. 8-azido-ATP inactivates SecA for proOmpA translocation and for translocation ATPase, yet does not inhibit a low level of ATP hydrolysis inherent in the isolated SecA protein. These data show that the SecA protein has a central role in coupling the hydrolysis of ATP to the transfer of pre-secretory proteins across the membrane.  相似文献   

9.
Efficient translocation of pure precursor of PhoE protein (prePhoE) could be accomplished in an in vitro system consisting of only inverted Escherichia coli inner membrane vesicles, ATP, and SecA and SecB protein. In this in vitro system SecB and not trigger factor could stabilize a translocation-competent state of prePhoE. In contrast, translocation competency of proOmpA could be induced by both trigger factor and SecB protein, suggesting specificity in interactions between cytosolic factors and precursors in outer membrane protein translocation.  相似文献   

10.
The electrochemical potential drives the translocation of the precursor form of outer membrane protein A (proOmpA) and other proteins across the plasma membrane of Escherichia coli. We have measured the electrical potential, delta psi, across inverted membrane vesicles during proOmpA translocation. delta psi, generated by the electron transport chain, is substantially dissipated by proOmpA translocation. delta psi dissipation requires SecA, ATP, and proOmpA. proOmpA which, due to the covalent addition of a folded protein to a cysteinyl side chain, is arrested during its translocation, can nevertheless cause the loss of delta psi. Thus the movement of charged amino acyl residues is not dissipating the potential. This translocation-specific reduction in delta psi is only seen in the presence of halide anions, although halide anions are not needed for proOmpA translocation per se. We therefore propose that translocation intermediates directly increase the membrane permeability to halide anions.  相似文献   

11.
The translocation of the precursor of a secretory protein into Escherichia coli inverted membrane vesicles was demonstrated in the absence of the cytosol fraction. A small, hydrophilic chimeric protein, OmpF-Lpp, possessing an uncleavable signal peptide was used as the model protein. As much as 80% translocation of the precursor protein into membrane vesicles was observed within 6 min in the absence of the cytosol fraction, when the precursor protein purified by means of immunoaffinity chromatography was used. The translocation was dependent on both ATP and respiratory substrates such as succinate. ATP could be replaced by a higher concentration of CTP or UTP, whereas GTP was inactive. Trichloroacetic acid treatment of the precursor protein, which is reported to result in removal of the trigger factor that is attached to a precursor protein (Crooke, E., and Wickner, W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5216-5220), did not lower the translocation efficiency significantly. Finally, the precursor protein, which was highly purified by means of successive immunoaffinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, could still be efficiently translocated into the membrane vesicles. The precursor proteins purified in the presence and absence of bovine serum albumin were both active. Neither washing of the membrane vesicles for prevention of possible contamination by cytosolic factors nor the addition of the cytosol fraction to the reaction mixture affected the translocation efficiency. These results indicate that the in vitro translocation of the OmpF-Lpp precursor protein can take place in the complete absence of cytosolic soluble proteins.  相似文献   

12.
K Nishiyama  S Mizushima    H Tokuda 《The EMBO journal》1993,12(9):3409-3415
A novel factor, which is a membrane component of the protein translocation machinery of Escherichia coli, was discovered. This factor was found in the trichloracetic acid-soluble fraction of solubilized cytoplasmic membrane. The factor was purified to homogeneity by ion exchange column chromatographies and found to be a hydrophobic protein with a molecular mass of approximately 12 kDa. The factor caused > 20-fold stimulation of the protein translocation when it was reconstituted into proteoliposomes together with SecE and SecY. SecE, SecY, SecA and ATP were essential for the factor-dependent stimulation of the activity. The factor stimulated the translocation of all three precursor proteins examined, including authentic proOmpA. Stimulation of the translocation of proOmpF-Lpp, a model presecretory protein, was especially remarkable, since no translocation was observed unless proteoliposomes were reconstituted with the factor. Partial amino acid sequence of the purified factor was determined. An antibody raised against a synthetic peptide of this sequence inhibited the protein translocation into everted membrane vesicles, indicating that the factor is playing an important role in protein translocation into membrane vesicles. The partial amino acid sequence was found to coincide with that deduced from the reported DNA sequence of the upstream region of the leuU gene. Cloning and sequencing of the upstream region revealed the presence of a new open reading frame, which encodes a hydrophobic protein of 11.4 kDa. We propose that the factor is a general component of the protein translocation machinery of E. coli.  相似文献   

13.
We have used a cytosol-free assay in which efficient translocation and signal peptide cleavage is achieved when the affinity-purified precursor of OmpA (proOmpA) is diluted out of 8 M urea into a suspension of yeast rough microsomes. This aspect of protein targeting and transport occurs in two discernible steps: (a) in the absence of ATP and cytosolic factors, the precursor binds to the membranes but is not translocated; (b) addition of ATP results in the translocation of the bound precursor and its processing to the mature form. The binding to microsomes of radiolabeled proOmpA is saturable and inhibited by the addition of unlabeled proOmpA but not by mature OmpA or other proteins. The binding of radiolabeled prepro-alpha-factor is also effectively competed by other preproteins, but not by mature ones. Scatchard analysis showed the Kd of proOmpA to be 7.5 X 10(-9) M. Binding is most likely protein mediated as treatment of the microsomes with the protease papain was found to be inhibitory. These results represent the first functional characterization of secretory protein precursor binding to membranes. Alkylation of the microsomes with NEM, washing the membranes with urea or using membranes from the (translocation) mutant ptll at the nonpermissive temperature, did not affect binding, but did eliminate the subsequent ATP-dependent translocation. The ability to subdivide translocation into individual reactions provides a more precise means of determining the membrane components involved in this process.  相似文献   

14.
Trigger factor is an abundant cytosolic protein of Escherichia coli which can stabilize proOmpA for in vitro translocation across inner membrane vesicles. The gene encoding E. coli trigger factor was isolated and sequenced, allowing construction of strains in which the expression of trigger factor is readily regulated. We found no defect in the in vivo rate of synthesis or secretion of proOmpA in trigger factor-depleted cells. The primary physiological defect in trigger factor-depleted or -overproducing cells is an enrichment of filamented cells. Filamentation of the trigger factor-overproducing strain is suppressed by a multicopy plasmid expressing the essential division gene ftsZ, suggesting that trigger factor has an important role in cell division.  相似文献   

15.
The export of proOmpA, the precursor of outer membrane protein A from Escherichia coli, requires preprotein translocase, which is comprised of SecA, SecY/E, and acidic phospholipids. Previous studies of proOmpA translocation intermediates (Schiebel, E., Driessen, A. J. M., Hartl, F.-U., and Wickner, W. (1991) Cell 64, 927-939) suggested that the "slippage" of the translocating polypeptide chain and the high level of ATP hydrolysis, characteristic of the "translocation ATPase," were part of a futile cycle. To examine the role of the mature domain of proOmpA in its translocation-dependent ATP hydrolysis, we used chemical cleavage to generate NH2-terminal fragments of this preprotein. Each fragment contained the 21-residue leader region and either 53 or 228 residues of the mature domain (preproteins P74 and P249, respectively). As observed with full-length proOmpA, the translocation of each fragment requires ATP and both the SecA and SecY/E domains of translocase and is stimulated by the transmembrane proton electrochemical gradient. The apparent maximal velocities of P74 and proOmpA translocation are similar. While the translocation of P74 and of proOmpA show the same apparent Km for ATP, far less ATP is hydrolyzed during the translocation of P74. Thus, the mature carboxyl-terminal domain of proOmpA has a major role in supporting the translocation ATPase.  相似文献   

16.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

17.
Translocation can drive the unfolding of a preprotein domain.   总被引:8,自引:3,他引:5       下载免费PDF全文
Precursor proteins are believed to have secondary and tertiary structure prior to translocation across the Escherichia coli plasma membrane. We now find that preprotein unfolding during translocation can be driven by the translocation event itself. At certain stages, translocation and unfolding can occur without exogenous energy input. To examine this unfolding reaction, we have prepared proOmpA-Dhfr, a fusion protein of the well studied cytosolic enzyme dihydrofolate reductase (Dhfr) connected to the C-terminus of proOmpA, the precursor form of outer membrane protein A. At an intermediate stage of its in vitro translocation, the N-terminal proOmpA domain has crossed the membrane while the folded Dhfr portion, stabilized by its ligands NADPH and methotrexate, has not. When the ligands are removed from this intermediate, translocation occurs by a two-step process. First, 20-30 amino acid residues of the fusion protein translocate concomitant with unfolding of the Dhfr domain. This reaction requires neither ATP, delta mu H+ nor the SecA subunit of translocase. Strikingly, this translocation accelerates the net unfolding of the Dhfr domain. In a second step, SecA and ATP hydrolysis drive the rapid completion of translocation. Thus energy derived from translocation can drive the unfolding of a substantial protein domain.  相似文献   

18.
Mutations in secD and secF show impaired protein translocation across the inner membrane of Escherichia coli. We investigated the effect of SecD and SecF (SecD/F) depletion on preprotein translocation into inverted inner membrane vesicles (IMVs). Both IMVs and cells which were depleted of SecD/F were defective in their ability to maintain a proton electrochemical gradient. The translocation of pre-maltose binding protein (preMBP), which is strongly delta microH+ dependent, showed a 5-fold decreased rate with IMVs lacking SecD/F. In contrast, proteolytic processing of preMBP to MBP by leader peptidase was similar in IMVs containing and lacking SecD/F, consistent with earlier findings that only ATP-dependent translocation is required for the initiation of translocation. In the absence of a delta microH+, with ATP as the sole energy source, preMBP translocation into IMVs which contained or were depleted of SecD/F was identical. Translocation of the precursor of outer membrane protein A (proOmpA) in the presence of subsaturating ATP also required a generated delta microH+ and, under these conditions, proOmpA translocation required SecD/F. With saturating concentrations of ATP, where delta microH+ has little effect on in vitro proOmpA translocation, SecD/F also had little effect on translocation. These results explain why SecD/F effects are precursor protein dependent in vitro.  相似文献   

19.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   

20.
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5′-(β,γ-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号