首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.  相似文献   

2.
Leaf area index (LAI, the one-sided foliage area per unit ground surface area) is a key determinant of plant productivity which has a large influence on water and energy exchange between vegetation and the atmosphere. The variation in forest LAI across landscapes and environmental gradients and its causes are not sufficiently understood. We measured the LAI of European beech (Fagus sylvatica) by litter trapping in 23 closed, mature stands across gradients of rainfall and soil acidity or fertility. With a mean LAI of 7.4 m2 m−2 (minimum: 5.6, maximum: 9.5 m2 m−2), beech stands maintained a comparably high leaf area index with relatively small variation along steep environmental gradients. Contrary to expectation, decreasing water availability (rainfall gradient from 1030 to 520 mm yr−1) or increasing soil acidity (pH 3–7) had no significant effect on LAI. Stand leaf mass (M l) increased slightly with soil fertility (C/N ratio, base saturation). We regressed parameters of site water availability (rainfall), soil fertility or acidity (pH, base saturation, C/N ratio, exchangeable Mg and Al content), and stand structure (stand age and stem density) against LAI and M l in order to detect environmental controls of stand leaf area. Stand age was the most influential factor for both LAI and M l (negative relationship). Stem density and the base saturation of the soil affected M l significantly, but had a weak influence on LAI. We conclude that the leaf area index of beech is mainly under control of age-related physiological factors, whereas the influence of soil chemistry and rainfall is comparably low.  相似文献   

3.
Responses of CO2 assimilation and stomatal conductance to decreasing leaf water potential, and to environmental factors, were analysed in a mixed natural stand of sessile oak (Quercus petraea ssp. medwediewii) and beech (Fagus svlvatica L.) in Greece during the exceptionally dry summer of 1998. Seasonal courses of leaf water potential were similar for both species, whereas mean net photosynthesis and stomatal conductance were always higher in sessile oak than in beech. The relationship between net photosynthesis and stomatal conductance was strong for both species. Sessile oak had high rates of photosynthesis even under very low leaf water potentials and high air temperatures, whereas the photosynthetic rate of beech decreased at low water potentials. Diurnal patterns were similar in both species but sessile oak had higher rates of CO2 assimilation than beech. Our results indicate that sessile oak is more tolerant of drought than beech, due, in part, to its maintenance of photosynthesis at low water potential.  相似文献   

4.
Measuring and modelling plant area index in beech stands   总被引:4,自引:0,他引:4  
For some beech (Fagus sylvatica L.) stands with different stand densities the plant area index (PAI) was measured by means of a Licor LAI-2000 plant canopy analyser. The stands are located on the slopes of a valley in south-west Germany and had been treated by different types of silvicultural management (heavy shelterwood felling, light shelterwood felling, control plot). The analyser was used (a) to investigate the light conditions on plots of the same thinning regime, (b) to quantify the differences between the different treatments and (c) to obtain absolute values of PAI for interdisciplinary research. PAI was measured at three different phenological stages (leafless, leaf-unfolding and fully leafed season in 2000) and was found to be about 5.2 for the fully developed canopy on the control plots, 3.2 on the light fellings and about 2.0 for the heavy fellings. In the leafless period PAI was between 1.1 (control) and 0.4 (heavy felling). Measurements made in summer 2000 and summer 2002 were compared, and showed an increase of PAI, especially on the thinned plots. Measurements of photosynthetically active radiation (PAR) above and below the canopy in combination with measured PAI were used to apply Beers Law of radiation extinction to calculate the extinction coefficient k for different sky conditions and for the different growing seasons on the control plots. The extinction coefficient k for the beech stands was found to be between 0.99 and 1.39 in the leafless period, 0.62 to 0.91 during leaf unfolding and between 0.68 and 0.83 in the fully leafed period. Using PAR measurements and the k values obtained, the annual cycle of PAI was modelled inverting Beers Law.  相似文献   

5.
The paper deals with the health status, production and structure of autochthonous beech stands in the eastern part of the Krkonoše Mts. (Czech Republic). The region was affected by increased air pollution load due to long-range SO2 transmission from the late 1970s to the early 1990s. In 1980, five research plots were established in long unmanaged beech stands at an optimum stage. Tree coordinates and initial biometrical measurements were made in 1980 and repeated in 2005. The defoliation of individual trees was monitored every year (ICP Forests principles). The actual stand development is compared with the model development worked out by the Sibyla growth simulator in variants with a model of natural mortality and with entering a real mortality of trees. Differences between the stand characteristics of actual and simulated development of forest stands suggest some production losses. The reason to the losses can be seen in the long-term impact of air pollution in the first decade of monitoring and its after-effects on soil quality and worsening health condition of stands. The anticipated acceleration in the onset of the phase of stand disintegration under the influence of air pollution load was not demonstrated.  相似文献   

6.
Phylogenetic diversity (PD, the diversity of lineages) and functional diversity (FD, the diversity of functional traits or groups in a biological community) reflect important yet poorly understood attributes of species assemblages. Until recently, few studies have examined the spatial variation of PD and FD in natural communities. Yet the relationships between PD and FD and area (termed PDAR and FDAR), like the analogous species–area relationship (SAR), have received less attention and may provide insights into the mechanisms that shape the composition and dynamics of ecological communities. In this study, we used four spatial point process models to evaluate the likely roles of the random placement of species, habitat filtering, dispersal limitation, and the combined effects of habitat filtering and dispersal limitation in producing observed PDARs and FDARs in two large, fully mapped temperate forest research plots in northeast China and in north‐central USA. We found that the dispersal limitation hypothesis provided a good approximation of the accumulation of PD and FD with increasing area, as it did for the species area curves. PDAR and FDAR patterns were highly correlated with the SAR. We interpret this as evidence that species interactions, which are often influenced by phylogenetic and functional similarity, may be relatively unimportant in structuring temperate forest tree assemblages at this scale. However, the scale‐dependent departures of the PDAR and FDAR that emerged for the dispersal limitation hypothesis agree with operation of competitive exclusion at small scales and habitat filtering at larger scales. Our analysis illustrates how emergent community patterns in fully mapped temperate forest plots can be influenced by multiple underlying processes at different spatial scales.  相似文献   

7.
Aims Assessment of factors regulating root decomposition is needed to understand carbon and nutrient cycling in forest ecosystems. The objective of this study is to examine the effects of soil depth and root diameter on root decomposition and to analyze the relationship of root decomposition with factors such as soil environmental conditions and initial litter quality.  相似文献   

8.
Some north-African Atlas cedar (Cedrus atlantica) forests are in decline, following decades of anthropogenic pressure and repeated drought events. We investigated if the recent decline episodes of these forests are linked to precipitation and temperature shifts, leading to a reduction in tree radial growth and climate-growth uncouplings. Tree-ring width chronologies of Atlas cedar in north-western Algeria allow the identification of climate and growth shifts in these vulnerable Mediterranean forests. Such chronologies, built for six sites, showed common patterns of year-to-year variability during the period 1910-2006. The growth at north-facing sites declined from the 1980s until 2006, whereas the growth at mid-elevation sites declined from the early 20th century until the 1940s, remained stable until the 1980s and then declined until 2006. Cool and wet spring conditions enhanced cedar growth. Sites with fast-growing trees, where growth was strongly reduced by dry summer conditions, showed the most-pronounced negative trends. However, a clear climate-growth uncoupling was observed after the 1970s, when the climate rapidly warmed. We also detected a negative growth shift in the 1980s, when mortality increased. This coincided with changes in early-warning signals of the growth series, such as an increase in the first-order autocorrelation of tree-ring width. All these lines of evidence indicate that the 1980s climate shift towards warmer and drier conditions triggered a shift in cedar growth. The use of radial-growth series as early-warning signals should be further investigated in this species and in other drought-sensitive conifers, given the aridification trends expected for the Mediterranean Basin.  相似文献   

9.
Aims Natural and anthropogenic changes in forests can have important influences on transpiration and water production. Understanding the effects of increasing disturbances, due for example to climate change and forest harvesting, requires detailed information on how forest density and structural attributes relate to transpiration. Mean annual transpiration of eucalypt forest communities is often strongly correlated with total cross-sectional sapwood area. Our aim was to test an efficient method for estimating sapwood area at 1.3 m height (SA 1.3) in a large number of trees to understand the spatial heterogeneity of tree and stand sapwood area within and between forest communities, and develop allometric relationships that predict SA 1.3 with forest inventory data. We also apply tree competition models to determine the degree to which the relationship between SA 1.3 and tree basal area at 1.3 m height (BA 1.3) is influenced by competition.Methods We visited 25 recently harvested southeastern Australian forest sites consisting of 1379 trees and 5 Eucalyptus species to evaluate a new efficient data collection method for estimating SA 1.3 with tree taper and stump dimensions data using mixed effects models. The locations of 784 stumps within one 5-ha site were accurately mapped using an unmanned aerial vehicle (UAV), and four distance-dependent tree competition models were applied across the site to explain within-stand variation in the ratio of SA 1.3 to BA 1.3. Data from 24 additional sites, consisting of ten 15 m radial plots per site, were used to analyse within-site variation in R Ha (the ratio of stand sapwood area SA Ha to stand basal area BA Ha). The radial plots were merged within each site to evaluate between-site variations in R Ha across the landscape. For predicting SA Ha with forest inventory data, we computed the relationship between SA Ha and a new index of total stem perimeter per hectare, defined as ? B A H a N T, where N T is tree stocking density.Important findings Our 1379 measured stems represent the most comprehensive measure of sapwood area, surpassing the 757 measured stems in native eucalypt forests published in literature. The species-specific R Ha varied considerably across sites and therefore extrapolating SA Ha with spatially distributed BA Ha maps and a generalized R Ha would introduce local uncertainty. We found that the species-specific stem perimeter index was more effective at capturing variability in SA Ha across the landscape using forest composition, structure and density data (R 2 : 0.72–0.77). The strong correlation between tree SA 1.3 and BA 1.3 improved slightly using tree competition models (R 2 increased from 0.86 to 0.88). Relating SA Ha to routinely measured forest inventory attributes within permanent plots and Light Detection and Ranging (LiDAR) data may provide opportunities to map forest water use in time and space across large areas disturbed by wildfire and logging.  相似文献   

10.
Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold‐induced tree line of all studied species and the drought‐induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co‐occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.  相似文献   

11.
12.
北京山区栎林的群落结构与物种组成   总被引:24,自引:0,他引:24  
在北京东灵山、喇叭沟门和大海陀山地区的辽东栎(Quercus liaotungensis)林以及白龙潭地区的槲树(Q.dentata)-麻栎(Q.acutissima)混交林中共调查了43个样方,利用这些样方资料,对群落进行TWINSPAN聚类和CCA排序,以研究北京地区栎林的群落结构、物种组成以及各群落之间的关系。结果表明:本地区栎林群落结构简单,不同栎林群落的结构差异很大。利用TWINSPAN对乔木层物种进行了分类,按不同指示种划分为7类。CCA排序结果显示第一轴与海拔关系显著,主要反映了温度因子的作用;第二轴与坡向关系显著,反映了水分因子的作用。排序结果与分类结果吻合,显示了不同生境条件对群落结构和物种分布的影响。结果还显示,本地区物种丰富度低,这可能与本地区植被受人为干扰强烈有一定关系。  相似文献   

13.
14.
15.
Deadwood is widely recognized to be an important issue for biodiversity conservation in forest ecosystems. Establishing guidelines for its management requires a better understanding of relationships between woody debris characteristics and associated species assemblages. Although deadwood diameter has been identified as an important factor predicting occurrence of many saproxylic species, the boundary between small and large diameter has not yet been precisely defined. In commercial forests, it is also of critical importance to know which diameter is large enough to host the beetle species associated with large logs in order to ensure cost-effectiveness of biodiversity conservation measures. We investigated the differences in saproxylic beetle assemblages among four different diameter classes of downed woody oak and maritime pine debris, in France. Beetles were sampled using in situ emergence traps. The diameter of deadwood pieces ranged from 1 to 40 cm. No patterns of nestedness associated with the gradient of diameter size were identified for either tree species. More indicator saproxylic species were observed in large logs and branches than in small logs. A clear distinction appeared in assemblage composition around the 5-cm diameter threshold whereas no similar pattern occurred around the 10 cm value, i.e. the classical threshold used in forestry to distinguish fine woody debris from coarse woody debris. For both tree species, the mean body length of beetles increased with the diameter of deadwood suggesting that the quantity of available resources per piece may constitute a limiting factor for large beetle species. This study confirms that not only large deadwood pieces are relevant for saproxylic biodiversity conservation but also the smallest pieces. Therefore, forest managers would be well advised to maintain a high diversity of deadwoods to maintain saproxylic biodiversity.  相似文献   

16.
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene–environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6–8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.Subject terms: Genetic variation, Ecological genetics  相似文献   

17.
In this study we examine the relationships between the vegetation of beech and beech-oak forest communities (Hordelymo-Fagetum, Galio-Fagetum, Deschampsio-Fagetum, Betulo-Quercetum) and their soil conditions in the lowlands of northern Germany, based on 84 sample plots. In all plots the vegetation was recorded and soil parameters were analysed (thickness of the O- and the A-horizons, pH, S-value, base saturation, C/N, mean Ellenberg moisture indicator value). The vegetation classification according to the traditional Braun-Blanquet approach was compared with the result of a multivariate cluster analysis. Vegetation-site relationships were analysed by means of an indirect gradient analysis (DCA).Both traditional classification methods and the cluster analysis have produced comparable classification results. So far as the species composition is concerned, a similar grouping of sample plots was found in both approaches. Multivariate cluster analysis thus supports the classification found by the Braun-Blanquet method. The result of the DCA shows that the four forest communities mentioned above represent clearly definable ecological units. The main site factor influencing changes in the species composition is a base gradient, which is best expressed by the S-value. In addition, within the series Hordelymo-Fagetum - Galio-Fagetum - Deschampsio-Fagetum the C/N-ratios and the thickness of the organic layers (O-horizon) increase continuously. By contrast, the floristic differences between oligotrophic forest communities (i.e., Deschampsio-Fagetum and Betulo-Quercetum) cannot be explained by a base gradient and increasing C/N-ratios. It is suggested that a different forest management history in some cases (e.g., promotion of Quercus robur by silvicultural treatments) is responsible for differences in the species composition, but on the other hand the result of the DCA indicates that Fagus sylvatica is replaced by Quercus robur with increasing soil moisture (i.e., with the increasing influence of a high groundwater table). Summarizing these results, it can be concluded that the ecological importance of single site factors affecting the species composition changes within the entire site spectrum covered by the beech and beech-oak forests of northern Germany.  相似文献   

18.
 叶面积指数(leaf area index, LAI)是定量描述冠层结构的最有效指标之一。鉴于森林冠层三维结构的高度复杂性和异质性, 迄今仍没有形成统一标准的LAI测量方法。该文利用LAI-2000冠层分析仪、CI-110冠层分析仪和半球摄影法(digital hemispherical photograph, DHP), 对北京东灵山地区以蒙古栎(Quercus mongolica)为主的落叶阔叶林、华北落叶松(Larix gmelinii var. principis-rupprechtii)林和油松(Pinus tabuliformis)林的有效叶面积指数(effective leaf area index, LAIe)进行了动态监测, 探寻其季节变化规律。为准确地估算温带山地主要森林类型的LAI, 对光学仪器测量值进行了去除木质成分、聚集效应等校正, 与基于凋落物收集法的相应实测值进行了比较分析。结果表明: 3种典型森林在生长季期间叶片生长均呈现单峰型; 3种光学仪器测量方法的同期LAIe数值大小顺序为: LAI-2000冠层分析仪>DHP>CI-110冠层分析仪。光学仪器的直接测量值LAIe包含了木质成分的贡献, 钝化了季节动态的变化幅度, 这对有明显季节交替的落叶林尤为突出。经校正, LAI-2000冠层分析仪和DHP的测量值与实测值都表现出显著的相关性, 其中LAI-2000冠层分析仪最适于采用基于空隙大小的校正方法, 而基于空隙度和空隙大小的综合算法则是校正DHP的最佳选择。结合经济成本和野外实际操作等因素考虑, DHP具有更大的推广优势, 特别适用于温带山地落叶林。  相似文献   

19.
Tree and stand level variables affecting the species richness, cover and composition of epiphytic lichens on temperate broad-leaved trees (Fraxinus excelsior, Quercus robur, Tilia cordata, Ulmus glabra, and U. laevis) were analysed in floodplain forest stands in Estonia. The effect of tree species, substrate characteristics, and stand and regional variables were tested by partial canonical correspondence analysis (pCCA) and by general linear mixed models (GLMM). The most pronounced factors affecting the species richness, cover and composition of epiphytic lichens are acidity of tree bark, bryophyte cover and circumference of tree stems. Stand level characteristics have less effects on the species richness of epiphytic lichens, however, lichen cover and composition was influenced by stand age and light availability. The boreo-nemoral floodplain forests represent valuable habitats for epiphytic lichens. As substrate-related factors influence the species diversity of lichens on temperate broad-leaved trees differently, it is important to consider the effect of each tree species in biodiversity and conservation studies of lichens. Nomenclature Randlane et al. (2007) for lichens; Leht (2007) for vascular plants.  相似文献   

20.
比叶面积(SLA)能够反映植物自身生长对策、对光能的捕获能力、对外界环境变化的适应和对可利用资源的分配策略,对植物的生境适应状况和群落的自然演替程度也起到重要的指示作用。为了深入了解温带森林植物SLA随空间变化的变异特征及其影响因素,跨越1200 km选取中国东北部12个典型温带森林(寒温带兴安落叶松林、温带红松针阔混交林和暖温带落叶阔叶栎林),通过对样地内物种进行系统性的调查,分析了植物SLA在空间上的变化规律及环境因素的影响效应。结果显示:中国温带森林植物SLA范围为2.02—99.65 m~2/kg(均值为34.18 m~2/kg),其中乔木SLA范围为2.02—58.74 m~2/kg(均值为21.32 m~2/kg),灌木SLA范围为2.88—99.65 m~2/kg(均值为31.60 m~2/kg),草本SLA范围为4.66—98.53 m~2/kg(均值为38.75 m~2/kg)。SLA在不同森林类型之间差异显著,具体表现为:温带红松针阔混交林>暖温带落叶阔叶栎林>寒温带兴安落叶松林。SLA受到气候因素和土壤因素的影响,其中随着年均降水、土壤碳氮含量的增加显...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号