首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental thresholds, degree-days for development, larval weights, and head capsule widths for each larval instar and the pupal stage of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) were studied at eight constant temperatures (5, 10, 15, 20, 25, 30, 35, and 40°C) for two source populations (Ravenswood, Chicago, IL [IL], and Bayside, Queens, NY [NY]). The estimated lower threshold temperature for development of instars 1-5 and the pupal stage was near 10°C and was near 12°C for the higher instars. Developmental rate was less temperature sensitive for instars 5-9 compared with instars 1-4. Development for all but the first instar was inhibited at constant temperatures >30°C, and all instars failed to develop at 40°C. Although the two source populations had similar responses to temperature, IL larvae were heavier than those from NY. Temperature and its influence on larval weight had profound impacts on whether a larva proceeded to pupation. Based on the temperature effects detailed here, larval development and pupation should be possible in most of the continental United States where suitable hosts are available. These data can be used to develop a degree-day model to estimate beetle phenology; however, at least 2°C should be added to air temperatures to adjust for the mediation of temperature by the wood. These data provide a basis for predicting the potential geographical range of this species and for developing phenological models to predict the timing of immature stages, both of which are important for management programs.  相似文献   

2.
Application of methoprene to fourth (penultimate) instar larvae of the silkworm Bombyx mori induced the appearance of the feeding dauer larvae at the fifth (last) instar and prevented pupal metamorphosis. Methoprene also increased the protein concentrations of hemolymph last instar larvae by preventing sequestration of storage proteins by the fat body. Usually, the female-specific storage protein 1 (SP1)* disappears from the male hemolymph at the time of the last larval instar. However, exposure of male larvae to methoprene at the penultimate instar enhanced the accumulation of SP1 in the hemolymph. The SP1 accumulated in males did not differ in molecular weight and immunoreactivity from the SP1 produced in female larvae. Both sexes of fourth instar larvae allatectomized on day 1 instantly accumulated SP1 in the hemolymph, and methoprene application after allatectomy suppressed the hemolymph accumulation of the SP1. In contrast, if allatectomy was carried out at a later stage of the fourth larval instar, SP1 concentration in hemolymph of fifth instar larvae did not increase, suggesting the different juvenile hormone action for regulation of SP1 synthesis in the penultimate instar larvae of silkworms.  相似文献   

3.
Heightened temperature increases the development rate of mosquitoes. However, in Aedes aegypti (Diptera: Culicidae), the larvae of which commonly experience limited access to food in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments to investigate the effects of temperatures increasing at intervals of 2 °C from 20 °C to 30 °C on the growth, maturation rate and longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) compared with L4, in which growth of >75% occurred. Although increasing the temperature reduced the duration of each instar, it had a U-shaped impact in terms of the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 °C and 30 °C, remained constant at 22 °C and 28 °C, and decreased at 24 °C and 26 °C. Growth from L2 to L3 significantly increased starvation resistance only from 26 °C to 30 °C. Increased temperature (>22 °C) consistently reduced starvation resistance in L1. In L2-L4, increments of 2 °C decreased starvation resistance between 20 °C and 24 °C, but had weaker and instar-specific effects at >24 °C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, indicating a trade-off between increased development rate and reduced starvation survival of early-instar larvae, particularly in the lower and middle temperatures of the dengue-endemic range of 20-30 °C. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify the density regulation of Ae. aegypti populations.  相似文献   

4.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   

5.
李明珠  刘向东 《昆虫学报》2022,65(10):1314-1323
摘要: 【目的】在全球不断变暖背景下,昆虫受到热胁迫的频率不断增加。短期内反复受到热胁迫会使昆虫产生热适应性,但是昆虫热驯化所产生的耐热能力的传代效应还不完全清楚。稻纵卷叶螟Cnaphalocrocis medinalis是水稻上的重要害虫,对其幼虫在特定温度下进行几代热锻炼可提高其对高温的适应能力。本研究旨在摸清稻纵卷叶螟热适应的传代能力,为在全球变暖形势下以温度因子预测其种群发展趋势提供指导。【方法】将实验室内分别经39℃和41℃连续锻炼30代建立的稻纵卷叶螟热锻炼品系HA39和HA41以及非锻炼品系HA27的1-5龄期幼虫在不同温度(36℃和41℃)下进行不同时长(1~144 h)的暴露处理,调查幼虫的存活率,确定热锻炼品系幼虫的耐热能力;采用两品系间杂交实验测定HA39和HA27各交配组合的繁殖力及后代3龄幼虫的耐热能力;对HA39停止高温锻炼,并测定停止锻炼2代后3龄幼虫的耐热能力。【结果】稻纵卷叶螟3龄幼虫经历多代次短期热锻炼不仅可提高该龄幼虫的高温适应力,而且可提高其他龄期幼虫对特定高温的耐受能力,表现为HA39和HA41在36或41℃下处理特定时长的存活率显著高于HA27。锻炼高温的不同,幼虫获得的热耐受能力也有差异。39℃下锻炼可提高4龄幼虫在36℃下暴露2和4 d以及5龄幼虫在41℃下暴露5和6 h时的存活率,但41℃下锻炼则不可。HA39和HA27的自交及杂交后代的繁殖力之间均无显著差异,杂交后代3龄幼虫在41℃下处理5和6 h时的存活率与HA39自交后代的相当,并且显著高于HA27自交后代的,幼虫通过热锻炼获得的耐热能力可从亲本遗传给后代。停止热锻炼2代后,在39℃下处理4 h时HA39 3龄幼虫的存活率显著高于HA27的,但39℃下其余处理时间以及36和41℃下处理1~7 h HA39 3龄幼虫的存活率均与HA27的无显著差异,表明幼虫热锻炼产生的耐热能力在停止锻炼后2代仍可部分保持。【结论】稻纵卷叶螟幼虫的热适应能力具有继代效应。经过长期的气候变暖适应后,稻纵卷叶螟种群的热适应能力很可能在不断增强,从而夏季高温对其种群的抑制作用减弱,其种群暴发频率增加。  相似文献   

6.
Mass production of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), larvae results in massive heat generation, which impacts facility management, waste conversion, and larval production. We tested daily substrate temperatures with different population densities (i.e., 0, 500, 1000, 5000, and 10 000 larvae/pan), different population sizes (i.e., 166, 1000, and 10 000 larvae at a fixed feed ratio) and air temperatures (i.e., 20 and 30 °C) on various production parameters. Impacts of shifting larvae from 30 to 20 °C on either day 9 or 11 were also determined. Larval activity increased substrate temperatures significantly (i.e., at least 10 °C above air temperatures). Low air temperature favored growth with the higher population sizes while high temperature favored growth with low population sizes. The greatest average individual larval weights (e.g., 0.126 and 0.124 g) and feed conversion ratios (e.g., 1.92 and 2.08 g/g) were recorded for either 10 000 larvae reared at 20 °C or 100 larvae reared at 30 °C. Shifting temperatures from high (30 °C) to low (20 °C) in between (∼10-d-old larvae) impacted larval production weights (16% increases) and feed conversion ratios (increased 14%). Facilities should consider the impact of larval density, population size, and air temperature during black soldier fly mass production as these factors impact overall larval production.  相似文献   

7.
When an imidazole derivative (KK-42) was applied to day 1 third instar larvae of the silkworm, Bombyx mori, 100% underwent precocious metamorphosis at the end of the fourth instar. Thus, the fourth instar becomes the last instar in these KK-42–treated larvae. The endocrine systems underlying the precocious metamorphosis were analyzed in the present study. Hydroprene application during the prolonged third instar after KK-42 treatment can prevent precocious metamorphosis, and the results showed dose-dependent and stage-specific effects. From analysis of the developmental changes in ecdysteroid levels in both KK-42–treated larvae and KK-42– and hydroprene-treated larvae, we conclude that changes in JH levels during the third larval instar can modify the secretion pattern of prothoracic glands and that during the next larval instar, very low ecdysteroid levels during the early stages of the presumptive last (fourth) larval instar are directly related to precocious metamorphosis. Arch. Insect Biochem. Physiol. 36:349–361, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Overwintering larvae of multivoltine and univoltine populations of Leptalina unicolor were reared under various constant and fluctuating temperatures superimposed on a photoperiod of either 12 h of light and 12 h of darkness (LD 12:12) or LD 15:9. Diapause of the larvae terminated in midwinter (by early February). All the larvae of both populations pupated after two molts without feeding and the head capsule width of the final instar larvae was smaller than that of the penultimate instar ones. The photoperiod did not significantly affect larval development, but long‐day conditions (LD 15:9) hastened pupal development. The thermoperiod had a significant effect on the development of the multivoltine population. When multivoltine population larvae were kept under a low fluctuating temperature regime (cryophase/thermophase = 14/20°C), the period until adult eclosion was shorter than that under a constant temperature of 17°C. On the contrary, when larvae were kept under a high fluctuating temperature regime (24/30°C), the period until adult eclosion was longer than that under a constant temperature of 27°C. However, the univoltine population did not show such a reaction to the fluctuating temperature. The durations of final instar larva and pupa of the multivoltine population were shorter than those of the univoltine population. The developmental zeros of penultimate and final instar larvae and pupae of the univoltine population were lower than those of the multivoltine population. The head capsule width of penultimate instar larvae and the forewing length of adults of the univoltine population were larger than those of the multivoltine population for both sexes.  相似文献   

9.
The effects of temperature on the development and survival of Shijimiaeoides divinus barine were examined in the laboratory in 2008. The eggs and larvae were reared at temperatures of 15, 17.5, 20, 25, 30 and 35°C with a long-day photoperiod of 16 h light : 8 h dark (16L : 8D). The highest hatchability of eggs was 88.0% at 20°C, but hatchability at high temperatures of 30 and 35°C was 30 and 0%, respectively. The lowest and highest survival rates from the first to third instar were 18.8% at 15°C and 76.9% at 20°C. Few deaths were observed after the fourth instar. The shortest developmental periods of the eggs and larvae were 4.0 and 15.8 days at 30°C, and the durations of the egg and larval stages increased significantly as the temperature decreased. The developmental zero and thermal constants were 9.6°C and 82.6 degree–days for the egg stage, and 10.7°C and 306.8 degree–days for the larval stage. The developmental period of the natural population of S. divinus barine in Azumino City, Nagano Prefecture was calculated using the developmental zero, thermal constants and Azumino City temperature data.  相似文献   

10.
温度对中华虎凤蝶幼虫生存与生长发育的影响   总被引:1,自引:0,他引:1  
姚洪渭  袁德成 《昆虫知识》1999,36(4):199-202
本文就温度对中华虎凤蝶幼虫的生存与生长发育进行了研究。结果表明,1龄幼虫16~32℃范围内的死亡率无显著差异;2龄幼虫死亡率在32℃下达30.92%,显著高于其它温度;3~5龄幼虫32℃下全部死亡,其它温度下多以28℃为高。1~2龄幼虫在16~32℃和3~5龄幼虫在16~28℃范围内的发育历期随温度升高而显著缩短,而平均发育速率则反之。用Weibull分布函数能较好地拟合各龄幼虫的存活率曲线,并由此判断出各存活率曲线类型。此外,还测定了各龄幼虫的发育起点温度和有效积温。最后建议中华虎凤蝶1~2龄和3~5龄幼虫饲养适宜温度分别为28℃和20~24℃。  相似文献   

11.
Bradysia cellarum Frey and Bradysia impatiens Johansen are major pests of vegetable crops, as well as edible mushrooms and ornamental plants, and damage to hosts resulting in economic losses. Temperatures above the optimum levels for these pests have been predicted to regulate their population growth during summer. The aim of the present study was to examine the effects of both heat stress and exposure time on the growth and development of eggs, larvae and pupae for two Bradysia species. The egg stage, egg hatching rate, 4th instar larval stage, pupation rate, pupal stage and adult emergence rate were observed after exposing at high temperatures of 34°C, 37°C and 40°C for 1, 2, 4 and 6 hr. The results showed that 34°C, 37°C and 40°C for 1-, 2-, 4- and 6-hr exposure treatments prolonged the developmental stage of egg, 4th instar larva and pupa, while decreasing the egg hatching rate, pupation rate and adult emergence rate. This suggests that increasing temperature or prolonging exposure time to the heat stress could significantly affect insect survival, growth and development. Our study could provide an ecological basis for pests’ management strategy by using short-term heat stress.  相似文献   

12.
Metaphycus flavus (Howard) (Hymenoptera: Encyrtidae) is a facultatively gregarious endoparasitoid of soft scales (Hemiptera: Coccidae). When it develops in superparasitised hosts, the larvae often attack and consume brood mates six or more days post oviposition. Under our laboratory conditions (25±1°C and 14 hours of light followed by 18±1°C and ten hours of darkness in 50-70% R.H.), M. flavus eggs hatched three days after oviposition. Measurements of the mandibles and tentorium indicate there are four larval instars, and M. flavus reaches the fourth instar by day six post oviposition, and pupates on day eight. Thus, cannibalism among M. flavus larvae occurs during the fourth instar. During this instar, M. flavus larvae separate from their attachment to the scale cuticle, to which they were tethered by a respiratory structure during the previous three larval instars. Once detached, they are free to move within the scale, which increases the probability of larval encounters and aggressive behaviours. Moreover, the mandibles of the fourth instar are better adapted for fighting than are those of the first three larval instars, since they are larger and more sclerotized. The cranium and mouthparts of M. flavus have four different types of sensory organs, some of which are almost certainly olfactory, an unexpected function for a larva that presumably is surrounded by an aqueous medium where gustatory sensilla would seem to be more appropriate. The cranium also bears two pairs of what appear to be secretory pores.  相似文献   

13.
SUMMARY. 1. Soyedina carolinensis Claassen, a leaf shredding stonefly, was reared in a series of three laboratory experiments from early instar to adult on different species of deciduous leaves and at various constant and fluctuating temperature regimes.
2. Experiment 1, which involved rearing larvae on fourteen different leaf diets at ambient stream temperatures, showed that diet significantly affected larval growth and adult size but did not affect overall developmental time.
3. Experiment 2, which involved rearing larvae on five different leaf diets at each of three fluctuating temperature regimes (viz ambient White Clay Creek (WCC), ambient WCC+3°C, and ambient WCC+6°C), showed that: (i) adding 6°C to the normal temperature regime of WCC was lethal to 99% of the larvae regardless of diet; and (ii) warming WCC by 3°C did not affect developmental time but did significantly reduce adult size relative to adults reared at WCC temperatures on certain diets.
4. Experiment 3, which involved rearing larvae on five different leaf diets at each of five constant temperatures (viz 5, 10, 15, 20, 25°C), showed that: (i) temperature significantly affected the mortality, growth, and development time of larvae whereas diet only affected larval growth and mortality; (ii) temperatures at or near 10°C yielded maximum larval growth and survival for most diets; (iii) at 5°C, larval mortality was high and growth was low resulting in a few small adults for most diets; (iv) larval mortality was at or near 100% at 15°C regardless of diet; and (v) no larvae survived at 20 and 25°C.  相似文献   

14.
During the 1960s, the midge, Eretmoptera murphyi, was transferred from sub-Antarctic South Georgia (55°S 37°W) where it is endemic to a single location on maritime Antarctic Signy Island (60°S 45°W). Its distribution has since expanded considerably, suggesting that it is pre-adapted to the more severe conditions further south. To test one aspect of the level of its pre-adaptation, the rapid cold hardening (RCH) response in this species was investigated. When juvenile (L1-L2) and mature (L3-L4) larvae of E. murphyi were directly exposed to progressively lower temperatures for 8h, they exhibited Discriminating Temperatures (DTemp, temperature at which there is 10-20% survival of exposed individuals) of -11.5 and -12.5°C, respectively. The mean SCP was above -7.5°C in both larval groups, confirming the finding of previous studies that this species is freeze-tolerant. Following gradual cooling (0.2°Cmin(-1)), survival was significantly greater at the DTemp in both larval groups. The response was strong, lowering the lower lethal temperature (LLT) by up to 6.5°C and maintaining survival above 80% for at least 22h at the DTemp. RCH was also exhibited during the cooling phase of an ecologically relevant thermoperiodic cycle (+4°C to -3°C). Mechanistically, the response did not affect freezing, with no alteration in the supercooling point (SCP) found following gradual cooling, and was not induced while the organism was in a frozen state. These results are discussed in light of E. murphyi's pre-adaptation to conditions on Signy Island and its potential to colonize regions further south in the maritime Antarctic.  相似文献   

15.
Invasive ectothermic species are limited in their geographic range expansion primarily by their capacity to withstand temperature extremes. Epiphyas postvittana is a highly polyphagous invasive leafroller that was discovered in California in 2006. To predict its potential range and future response to climate change, high temperature tolerance of this species was determined for all life stages and larval instars. Using the static method to estimate high temperature tolerance with response to probing as an endpoint, the mean time leading to 50% mortality (LT(50)) ranged from 45 to 187h at 32.3°C, 34 to 68h at 36°C, 11 to 21h at 38°C, and 1.2 to 5.6h at 40.4°C. There was no clear pattern in the relative tolerance of the life stages across the range of temperatures tested. For pupae and adults, gender did not influence the LT(50) values at any of the temperatures tested. For the larval instars, LT(50) values increased with increasing larval instar at the highest three temperatures while this trend was reversed for the lowest temperature (32.3°C). An analysis of LT(50) values obtained from acute responses to probing compared to subsequent survival to adult emergence, showed that chronic mortality severely affected all larval instars at three out of the four constant temperatures and resulted in 64-85% reduction in LT(50) values. No difference in acute and chronic mortality was found for exposure of the egg stage to high temperatures. These findings have important implications for predicting thermal limits and range expansions of insect species, since upper thermal tolerance could readily be overestimated from the use of ad hoc rather than ecologically relevant endpoint measurements such as survival to adult emergence.  相似文献   

16.
SUMMARY. Population and production dynamics of Ceraclea ancylus (Vorhies), a leptocerid caddisfly with a univoltine life cycle, five larval instars, and a single cohort population, were examined in Brashears Creek, Kentucky. A systematic sampling approach that included analysis in riffle, pool, and waterwillow bed habitats was used and fourteen sampling transects were taken across Brashears Creek between May 1971 and July 1972. For each of the 70 m2 samples taken along a transect, the depth, habitat, and substrate type were recorded. The number of C. ancylus cases and numbers and dry weights of each larval instar were determined. The majority of the C. ancylus population was in the second larval instar in July, the third larval instar in August, the fourth larval instar in September, and the fifth larval instar from October through May. The spring population was 30% of the early instar maximum estimated the previous August. The spatial distribution of C. ancylus reflects a logarithmic pattern with early instar larvae more highly clumped than the late larval instar and pupal populations. Initial standing stock estimates were less than 1% of the standing stock biomass. A production estimate of 9.9 mg/m2·year (dry weight) was determined using the instantaneous growth method, Allen's Curve method, and the Hynes method of estimating secondary production. Turnover ratios (7.0 annual TR, 5.7 cohort TR) were higher than estimates reported as typical for benthic macroinvertebrates because of the low initial to final mean individual weight of the C. ancylus larvae (0.4%). Production estimates calculated for C. ancylus populations in waterwillow bed (4.4 mg/m2·year) and pool (13.7 mg/m2·year) habitats were less than calculated for the riffle population (19.9 mg/m2·year). The annual turnover ratio (10.2) was higher in the pool population than in other habitats because of spring larval migration into the pool from other habitats. A trend of higher production estimates with larger sized substrate particles and increased numbers of particles may reflect the increase in available food sources or attachment sites. The accuracy of production estimates and their applicability to water resource management may be limited by a failure to consider the spatial distributions of the population being sampled and the tendency for sampling procedures to be confined to single habitats.  相似文献   

17.
The thermoregulation behavior of Lucilia sericata larvae (Diptera: Calliphoridae), a necrophagous species that feeds on vertebrate cadavers, was investigated. These larvae require high heat incomes to develop, and can elevate temperatures by forming large aggregates. We hypothesized that L. sericata larvae should continue to feed at temperatures up to 38 °C, which can be reached inside larval masses. Thermal regulation behavior such as movement between a hot food spot and colder areas was also postulated. The hypotheses were tested by tracking for 1 h the activity of single, starved third instar larvae in a Petri dish containing 1 food spot (FS) that was heated to a constant temperature of 25 °C, 34 °C or 38 °C with an ambient temperature of 25 °C. The influence of previous conspecific activity in the food on larval behavior was also tested. The crops of larvae were dissected to monitor food content in the digestive systems. Based on relative crop measurements, larvae fed at all food temperatures, but temperature strongly affected larval behavior and kinematics. The total time spent by larvae in FS and the duration of each stay decreased at high FS temperature. Previous activity of conspecifics in the food slightly increased the time spent by larvae in FS and also decreased the average distance to FS. Therefore, necrophagous L. sericata larvae likely thermoregulate during normal feeding activities by adjusting to local fluctuations in temperature, particularly inside maggot masses. By maintaining a steady internal body temperature, larvae likely reduce their development time.  相似文献   

18.
为探讨热激条件下二化螟Chilo suppressalis幼虫体内生理上的保护反应,本研究应用流式细胞术分析了热胁迫对二化螟幼虫血淋巴细胞内活性氧(ROS)、热休克蛋白90(HSP90)的产生和对细胞凋亡的影响。结果表明:暴露于33℃,36℃和39℃的二化螟5龄幼虫的ROS与对照(28℃)相比显著提高,分别增加了1.71,1.69和1.38倍;当温度达到33℃以后,ROS不再显著增加。实时定量PCR结果显示,二化螟HSP90基因在热胁迫诱导下表达。流式细胞术检测表明,HSP90的变化与在mRNA水平上的变化高度一致,热胁迫处理没有造成血淋巴细胞凋亡的显著变化。这些研究结果进一步证明热胁迫产生的ROS激活HSP90基因的表达,HSP90蛋白在保护机体免受ROS引起的伤害中起着重要作用,能够抑制血淋巴细胞凋亡的发生。  相似文献   

19.
Larvae of the bean blister beetle, Epicauta gorhami (Coleoptera: Meloidae), feed on grasshopper eggs in soil and undergo hypermetamorphosis. This beetle undergoes larval diapause in the fifth instar as a pseudopupa, a form characteristic of hypermetamorphosis in meloid beetles. This pseudopupal diapause is maintained for a long period if the larvae are kept under continuous diapause-inducing short-day conditions. In the present study, the effects of temperature and photoperiod on termination of pseudopupal diapause in E. gorhami were examined using pseudopupae obtained under 12L-12D at 25°C. Diapause was terminated by exposure to low or high temperature, but not by transfer to long-day conditions. The pseudopupal stage comprises diapause and post-diapause phases despite its unchanging appearance. The optimum low temperature for diapause termination was 10-15°C, and a higher or lower temperature was less effective. There was an individual variation in the low temperature requirement for diapause termination and post-diapause development may not occur until this requirement is satisfied. Although under natural conditions pseudopupae may encounter low temperatures that are effective for diapause termination at different ages, our results show that pseudopupae at various ages respond similarly to low temperature exposure. This response may ensure that resumption of development synchronizes in a population.  相似文献   

20.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号