首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large size botulinum toxin complex (L-TC) is composed of a single neurotoxin (BoNT), a single nontoxic nonhaemagglutinin (NTNHA) and a haemagglutinin (HA) complex. The HA complex is comprised of three HA-70 molecules and three arm structures of HA-33/HA-17 that consist of two HA-33 and a single HA-17. In addition to the mature L-TC, smaller TCs are present in cultures: M-TC (BoNT/NTNHA), M-TC/HA-70 and immature L-TCs with fewer HA-33/HA-17 arms than mature L-TC. Because L-TC displays higher oral toxicity than pure BoNT, it was presumed that nontoxic proteins are critical for food poisoning. In this study, the absorption of TCs across intestinal epithelial cells was assessed by examining the cell binding and monolayer transport of serotype D toxins in the rat intestinal epithelial cell line IEC-6. All TCs, including pure BoNT, displayed binding and transport, with mature L-TC showing the greatest potency. Inhibition experiments using antibodies revealed that BoNT, HA-70 and HA-33 could be responsible for the binding and transport. The findings here indicate that all TCs can transport across the cell layer via a sialic acid-dependent process. Nonetheless, binding and transport markedly increased with number of HA-33/HA-17 arms in the TC. We therefore conclude that the HA-33/HA-17 arm is not necessarily required for, but facilitates, transport of botulinum toxin complexes.  相似文献   

2.
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). To assess the role of nontoxic components in the oral intoxication of botulinum TCs, we investigated the permeability of serotype D strain 4947 BoNT and its various TC species through cultured Caco-2 cell monolayers. The L-TC species (complexes composed of BoNT, NTNHA, HA-70, HA-33 and HA-17) showed potent permeability through the cell layer, whereas free BoNT, M-TC (BoNT and NTNHA complexes) and M-TC/HA-70 showed little or no permeability. Cell binding tests demonstrated that HA-33/HA-17 complexes bound to cells, whereas other components did not. These findings suggest that BoNT in the 650-kDa L-TC permeates into the cell mainly in an HA-33/HA-17-mediated manner, although free BoNT can permeate into the cell. As free BoNT and M-TC were susceptible to digestion with gastrointestinal juice, it is likely that L-TC species containing HA-33 caused higher oral toxicity in mice than others. We conclude that the HA-33 subcomponent plays a critical role in the permeation of TCs into intestinal epithelium, and that other HA subcomponents protect BoNT against gastrointestinal digestion.  相似文献   

3.
Large-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall. In this study, we determined the solution structure of the HA-33/HA-17 trimer by using small-angle X-ray scattering (SAXS). The SAXS image of HA-33/HA-17 exhibited broadly similar appearance to the crystal image of the complex. On the other hand, in the presence of N-acetylneuraminic acid, glucose and galactose, the solution structure of the HA-33/HA-17 trimer was drastically altered compared to the structure in the absence of the sugars. Sugar-induced structural change of the HA-33/HA-17 trimer may contribute to cell binding and subsequent transport across the intestinal cell layer.  相似文献   

4.
The large-sized botulinum toxin complex (L-TC) is composed of botulinum neurotoxin (BoNT) and nontoxic proteins, e.g. nontoxic nonhemagglutinin (NTNHA) and three types of hemagglutinins (HAs; HA-33, HA-17 and HA-70). The nontoxic proteins play a critical role in L-TC oral toxicity by protecting the BoNT in the digestive tract, and facilitating absorption of the L-TC across the intestinal wall. Under alkaline conditions, the L-TC separates into BoNT and the nontoxic protein complex (NC). In this study, we established a two-step procedure to yield highly pure NC from the L-TC produced by Clostridium botulinum serotype D strain 4947 in which the NC was isolated from the L-TC by gel filtration under alkaline conditions followed by immunoprecipitation with an anti-BoNT antibody to remove contaminating BoNT from the NC fraction. Western blotting and electrophoretic analysis showed that the highly purified NC fraction had only very slight or no BoNT contamination. In addition, the purified NC fraction showed no intraperitoneal (ip) toxicity to mice at a dose of 38?ng per animal whereas the L-TC exhibited an ip median lethal dose of 0.38?ng per mouse. The highly purified NC displayed the same hemagglutination titer as the L-TC. The NC, as well as the L-TC, demonstrated cell binding and monolayer transport in the rat intestinal epithelial cell line IEC-6. Consequently, the highly purified NC can function as a ??delivery vehicle?? even without the BoNT.  相似文献   

5.
Botulinum neurotoxin (BoNT) associates with nontoxic proteins, either a nontoxic nonhemagglutinin (NTNHA) or the complex of NTNHA and hemagglutinin (HA), to form M- or L-toxin complexes (TCs). Single BoNT and NTNHA molecules are associated and form M-TC. A trimer of the 70-kDa HA protein (HA-70) attaches to the M-TC to form M-TC/HA-70. Further, 1–3 arm-like 33- and 17-kDa HA molecules (HA-33/HA-17 trimer), consisting of 1 HA-17 protein and 2 HA-33 proteins, can attach to the M-TC/HA-70 complex, yielding 1-, 2-, and 3-arm L-TC. In this study, the purified 1- and 2-arm L-TCs spontaneously converted into another L-TC species after acquiring the HA-33/HA-17 trimer from other TCs during long-term storage and freezing/thawing. Transmission electron microscopy analysis provided evidence of the formation of detached HA-33/HA-17 trimers in the purified TC preparation. These findings provide evidence of reversible association/dissociation of the M-TC/HA-70 complex with the HA-33/HA-17 trimers, as well as dynamic conversion of the quaternary structure of botulinum TC in culture.  相似文献   

6.
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.  相似文献   

7.
A unique strain of Clostridium botulinum, serotype D 4947 (D-4947), produces a considerable amount of a 650 kDa toxin complex (L-TC) and a small amount of a 280 kDa M-TC, a 540 kDa TC, and a 610 kDa TC. The complexes are composed of only un-nicked components, including neurotoxin (NT), nontoxic nonhemagglutinin (NTNHA) and hemagglutinin subcomponents (HA-70, HA-33 and HA-17). Unlike other NTs from all serotype strains, separation of D-4947 NT from L-TC, except for M-TC, during chromatography required highly alkaline conditions around pH 8.8. The separated NT and NTNHA/HAs complex can be reconstituted to L-TC that is indistinguishable from the parent L-TC with respect to toxicity, hemagglutination activity and gel filtration profile. The isoelectric points of NT and NTNHA/HAs were close together depending on the number of HA-33/17 molecules. We have established a new method to separate the unique D-4947 NT from the complex, which will yield valuable information on structure of botulinum toxin.  相似文献   

8.
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (L-TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). The binding properties of BoNT to neurons and L-TC to intestinal epithelial cells are well documented, while those to other tissues are largely unknown. Here, to obtain novel insights into the pathogenesis of foodborne botulism, we examine whether botulinum toxins bind to vascular endothelial cells. BoNT and 750 kDa L-TC (a complex of BoNT, NTNHA and HAs) of Clostridium botulinum serotype D were incubated with bovine aortic endothelial cells (BAECs), and binding to the cells was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Both BoNT and L-TC bound to BAECs, with L-TC showing stronger binding. Binding of BoNT and L-TC to BAECs was significantly inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, galactose, lactose or N-acetyl galactosamine did not significantly inhibit toxin binding to the cells. This is the first report demonstrating that BoNT and L-TC bind to BAECs via sialic acid, and this mechanism may be important in the trafficking pathway of BoNT in foodborne botulism.  相似文献   

9.
Clostridium botulinum produces the botulinum neurotoxin (BoNT). Previously, we provided evidence for the “building-block” model of botulinum toxin complex (TC). In this model, a single BoNT is associated with a single nontoxic nonhemagglutinin (NTNHA), yielding M-TC; three HA-70 molecules are attached and form M-TC/HA-70, and one to three “arms” of the HA-33/HA-17 trimer (two HA-33 and one HA-17) further bind to M-TC/HA-70 via HA-17 and HA-70 binding, yielding one-, two-, and three-arm L-TC. Of all TCs, only the three-arm L-TC caused hemagglutination. In this study, we determined the solution structures for the botulinum TCs using small-angle X-ray scattering (SAXS). The mature three-arm L-TC exhibited the shape of a “bird spreading its wings”, in contrast to the model having three “arms”, as revealed by transmission electron microscopy. SAXS images indicated that one of the three arms of the HA-33/HA-17 trimer bound to both HA-70 and BoNT. Taken together, these findings regarding the conformational changes in the building-block architecture of TC may explain why only three-arm L-TC exhibited hemagglutination.  相似文献   

10.
The botulinum neurotoxins (BoNTs) are the most potent toxins known in nature, causing the lethal disease known as botulism in humans and animals. The BoNTs act by inhibiting neurotransmitter release from cholinergic synapses. Clostridium botulinum strains produce large BoNTs toxin complexes, which include auxiliary non-toxic proteins that appear not only to protect BoNTs from the hostile environment of the digestive tract but also to assist BoNT translocation across the intestinal mucosal layer. In this study, we visualize for the first time a series of botulinum serotype D toxin complexes using negative stain transmission electron microscopy (TEM). The complexes consist of the 150-kDa BoNT, 130-kDa non-toxic non-hemagglutinin (NTNHA), and three kinds of hemagglutinin (HA) subcomponents: 70-kDa HA-70, 33-kDa HA-33, and 17-kDa HA-17. These components assemble sequentially to form the complex. A novel TEM image of the mature L-TC revealed an ellipsoidal-shaped structure with "three arms" attached. The "body" section was comprised of a single BoNT, a single NTNHA and three HA-70 molecules. The arm section consisted of a complex of HA-33 and HA-17 molecules. We determined the x-ray crystal structure of the complex formed by two HA-33 plus one HA-17. On the basis of the TEM image and biochemical results, we propose a novel 14-mer subunit model for the botulinum toxin complex. This unique model suggests how non-toxic components make up a "delivery vehicle" for BoNT.  相似文献   

11.
The purified progenitor toxin of Clostridium botulinum type C strain 6814 (C-6814) forms a large complex composed of 150-kDa neurotoxin (NT), 130-kDa nontoxic-nonhemagglutinin (NTNHA), and hemagglutinin (HA) components. The HA component consisted of a mixture of several subcomponents with molecular masses of 70, 55, 33, 26-21 and 17 kDa. We isolated the HA subcomponents from the progenitor toxin by chromatography in the presence of denaturants. The isolated HA subcomponents, designated as i-HA-33, i-HA-55, i-HA-70 and i-HA-33/17, were nearly homogeneous on SDS/PAGE, but the HA-17 and HA-26-21 components were not purified. Some HA subcomponents, designated as f-HA-33 and f-HA-33/17 complex, existed free of the progenitor toxin in the culture medium and they were separately purified. Every HA subcomponent so far isolated shows binding activity to erythrocytes. The hemagglutination activities of each HA subcomponent had a titer of 25 for the f-HA-33/17 complex, and below 23 for the other f- and i-HA subcomponents, while the parent progenitor L toxin was 28. The reconstitution of various combinations of f- and i-HA subcomponents was attempted via mixing and tested for hemagglutination activity. When the i-HA-33/17 complex and i-HA-55 were mixed, the hemagglutination activity was recovered to a titer of 29, which was slightly higher than that of the parent toxin. These data imply that a combination of at least HA-33, -17 and -55 subcomponents is required for full hemagglutination activity of the botulinum progenitor toxin, but each single HA subcomponent shows weak or no aggregation of erythrocytes.  相似文献   

12.
13.
Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.  相似文献   

14.
The Clostridium botulinum type C 16S progenitor toxin contains a neurotoxin and several nontoxic components, designated nontoxic nonhemagglutinin (HA), HA1 (HA-33), HA2 (HA-17), HA3a (HA-22-23), and HA3b (HA-53). The HA3b subcomponent seems to play an important role cooperatively with HA1 in the internalization of the toxin by gastrointestinal epithelial cells via binding of these subcomponents to specific oligosaccharides. In this study, we investigated the sugar-binding specificity of the HA3b subcomponent using recombinant protein fused to glutathione S-transferase and determined the three-dimensional structure of the HA3a-HA3b complex based on X-ray crystallography. The crystal structure was determined at a resolution of 2.6 Å. HA3b contains three domains, domains I to III, and the structure of domain I resembles HA3a. In crystal packing, three HA3a-HA3b molecules are assembled to form a three-leaved propeller-like structure. The three HA3b domain I and three HA3a alternate, forming a trimer of dimers. In a database search, no proteins with high structural homology to any of the domains (Z score > 10) were found. Especially, HA3a and HA3b domain I, mainly composed of β-sheets, reveal a unique fold. In binding assays, HA3b bound sialic acid with high affinity, but did not bind galactose, N-acetylgalactosamine, or N-acetylglucosamine. The electron density of liganded N-acetylneuraminic acid was determined by crystal soaking. In the sugar-complex structure, the N-acetylneuraminic acid-binding site was located in the cleft formed between domains II and III of HA3b. This report provides the first determination of the three-dimensional structure of the HA3a-HA3b complex and its sialic acid binding site. Our results will provide useful information for elucidating the mechanism of assembly of the C16S toxin and for understanding the interactions with oligosaccharides on epithelial cells and internalization of the botulinum toxin complex.  相似文献   

15.
Strains of Flavobacterium psychrophilum were studied for their ability to adhere and cause agglutination of erythrocytes and yeast cells. Strains of the serotype Th showed low or no hemagglutinating (HA) properties toward human, avian, bovine, and rainbow trout erythrocytes, whereas strains of serotype Fd and Fp(T) exhibited distinct HA properties. None of the strains was able to cause agglutination of yeast cells. Greater adherence specificity toward rainbow trout blood cells was seen for the HA-positive strains. Growth at 5 degrees C, compared to that at 15 degrees C, induced an increase in the hemagglutination of some strains. HA activities of F. psychrophilum were inhibited only by sialic acid (N-acetyl-neuraminic acid), heat treatment at 65 degrees C, and proteinase K treatment and not by any of seven other carbohydrates, periodate oxidation, or treatment with trypsin. The supernatant from washed bacterial cells also showed some HA properties. All strains were shown to be highly hydrophobic by the hydrophobic interaction chromatography test, although some contradictions to the results of the salt aggregation test (showing some strains as less hydrophobic) were seen. These results indicate that the aggregation of F. psychrophilum and erythrocytes depend on a lectin present on the surface of HA-positive F. psychrophilum strains and absent on HA-negative strains. This lectin reacts specifically with sialic acid. The adhesion differences observed for F. psychrophilum strains do not appear to correlate with the virulence but still provide insights into the interaction of F. psychrophilum and rainbow trout.  相似文献   

16.
Various types of fimbriae on pathogenic Escherichia coli strains have been classified by their antigenicities and recognition specificities for receptors. However, the antigenicity of fimbrial proteins does not always correlate with the fimbrial recognition specificity. In this communication, the exact carbohydrate structures recognized by the fimbriae of two human uropathogenic E. coli strains, KS71 (O4) and IH11024 (O6), that have P-fimbrial antigen, were examined. Strain KS71 showed mannose-resistant (MR) hemagglutination (HA) of human blood group OP1 phenotype erythrocytes, and its HA was inhibited by blood group Pk antigen, Gal(alpha,1-4)Gal(beta,1-4)Glc-ceramide and P antigen, GalNAc(beta,1-3)Gal (alpha,1-4)Gal(beta,1-4)Glc-ceramide but not by Forssman antigen, GalNAc(alpha,1-3)GalNAc(beta,1-3)Gal(alpha,1-4)Gal (beta,1-4)Glc-ceramide, as previously described in many papers. The cells also showed MR HA of sheep erythrocytes, which was potently inhibited by Forssman, and weakly by P and Pk antigens. These phenomena could not be explained by the above P adhesin specificity. This adhesin was called Forssman-like adhesin. Strain IH11024 also caused MR HA of sheep erythrocytes but not of human erythrocytes. The HA was inhibited specifically by Forssman but neither by Pk nor P antigen. This adhesin was completely different from P adhesin and Forssman-like adhesin in recognition of the carbohydrate epitope. This adhesin, until now called a pseudotype of P fimbriae, was renamed Forssman adhesin.  相似文献   

17.
A critical role in internalizing the Clostridium botulinum neurotoxin into gastrointestinal cells is played by nontoxic components complexed with the toxin. One of the components, a β-trefoil lectin has been known as HA33 or HA1. The HA33 from C. botulinum type A (HA33/A) has been predicted to have a single sugar-binding site, while type C HA33 (HA33/C) has two sites. Here we constructed HA33/C mutants and evaluated the binding capacities of the individual sites through mucin-assay and isothermal titration calorimetry. The mutant W176A (site I knockout) had a Kd value of 31.5 mM for galactose (Gal) and 61.3 mM for N-acetylgalactosamine (GalNAc), while the Kd value for N-acetylneuraminic acid (Neu5Ac) was too high to be determined. In contrast, the double mutant N278A/Q279A (site II knockout) had a Kd value of 11.8 mM for Neu5Ac. We also determined the crystal structures of wild-type and the F179I mutant in complex with GalNAc at site II. The results suggest that site I of HA33/C is quite unique in that it mainly recognizes Neu5Ac, and site II seems less important for the lectin specificity. The architectures and the properties of the sugar-binding sites of HA33/C and HA33/A were shown to be drastically different.  相似文献   

18.
The surface of Flavobacterium psychrophilum was examined by electron microscopy to determine if previous findings of haemagglutination positive (HA+) and haemagglutination negative (HA-) abilities could be correlated with expression of pili or of a capsular layer. A thin capsular layer was observed in both HA+ and HA- strains but typical pili were absent. However, long, tubular blebs that released membrane vesicles (MVs) into the supernatant were observed on up to 94% of cells within 1 sample. The surface blebbing was increased for 1 strain following growth on media with restricted iron availability. The MVs had an intact membrane bilayer and were released from blebbing cells of both strains. The protein profiles of MVs, while containing some banding similarity with the profile of outer membrane preparations (OMPs) and of lysed whole cells (WCs), showed several bands that reacted strongly with rabbit anti-whole-cell antisera. Two distinct bands of approximately 62 and 58 kDA were highly expressed in the MVs and not seen in the OMP. MVs contained proteolytic activity towards gelatine but not towards casein and elastin, which were only degraded by live cells. Low molecular weight lipopolysaccharides (LPS) or lipooligosaccharides (LOS) were associated with the MVs. Only the MVs of the HA+ strain possessed haemagglutinin activity. These findings suggest that the F. psychrophilum may, through surface blebbing, release antigenic MVs that contain some proteolytic activity and may aid the bacterium in releasing nutrients from its surrounding environment as well as playing a role in impeding the immune response of its host.  相似文献   

19.
Using SDS-PAGE, we found that one subcomponent, hemagglutinin (HA-33), from the Clostridium botulinum progenitor toxin of type D strain 1873 and type C strain Yoichi had slightly smaller molecular sizes than those of type C and D reference strains, but other components did not. Based on N- and C-terminal sequence analyses of HA-33, a deletion of 31 amino acid residues from the C-terminus at a specific site was observed in the HA-33 proteins of both strains. The progenitor toxins from both strains showed poor hemagglutination activities, titers of 2(1) or less, which were much lower than titers from the reference strains (2(6)), and did not bind to erythrocytes. These results suggest strongly that the short C-terminal region of the HA-33 plays an essential role in the hemagglutination activity of the botulinum progenitor toxin. Additionally, a sequence motif search predicted that the C-terminal region of HA-33 has a carbohydrate-recognition subdomain.  相似文献   

20.
The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号