首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frdB gene, encoding the iron-sulphur protein subunit of fumarate reductase, has been located and its complete nucleotide sequence determined. The identity of the gene was confirmed by protein chemical studies and determination of the NH2-terminal sequence of the FrdB protein. The frdB gene is situated distal to and partially overlapped by frdA which codes for the flavoprotein subunit of the reductase. Its reading frame contains 244 codons and predicts a protein of Mr 27092. In composition, the FrdB protein is strikingly similar to the corresponding subunit of the related flavoenzyme, succinate dehydrogenase. Analysis of the protein's primary structure revealed several features characteristic of iron-sulphur proteins.  相似文献   

2.
3.
1. Ampicillin-hyperresistant mutants of Escherichia coli K12 bearing multiple gene duplications in the ampC (beta-lactamase) gene region of the chromosome overproduced at least six proteins with molecular weights 97,000, 80,000, 72,000, 49,000, 33,000 and 26,500 during anaerobic growth. All but two of the proteins (80,000-Mr and 49,000-Mr) were also overproduced during aerobic growth. The distribution of the proteins in soluble and particulate cell fractions was investigated. 2. The 33,000-Mr and 72,000-Mr components were identified as beta-lactamase and the amp-linked frdA gene product, fumarate reductase, respectively. Co-sedimentation of the 26,500-Mr component with the fumarate reductase suggested that the smaller protein could be functionally related to the reductase. The lack of correspondence between the amplified proteins and the products of other amp-linked genes, aspA and mop(groE), indicated that these genes are not included in the repetitive sequence. 3. Fumarate reductase activities were amplified up to 32-fold by the multiple gene duplications. Two forms of fumarate reductase were produced: particulate (membrane-bound) and soluble (cytoplasmic). Production of the soluble form occurred when the binding capacity of the membrane was saturated. Both forms of fumarate reductase were enzymically active but the soluble form was readily inactivated under assay conditions.  相似文献   

4.
Abstract The frd operon encoding the fumarate reductase of Proteus vulgaris has been cloned and a restriction map of the flanking chromosomal region established. Although the cloned genes complement an Escherichia coli frdA mutant, the overall arrangement of the P. vulgaris chromosome near the frd operon is very different. None of the well-characterised markers linked to the E. coli frd genes, such as ampC or mop , could be detected by genetic studies or DNA-DNA hybridisation.  相似文献   

5.
Succinate dehydrogenases and fumarate reductases are complex mitochondrial or bacterial respiratory chain proteins with remarkably similar structures and functions. Succinate dehydrogenase oxidizes succinate and reduces ubiquinone using a flavin adenine dinucleotide cofactor and iron-sulfur clusters to transport electrons. A model of the quaternary structure of the tetrameric Saccharomyces cerevisiae succinate dehydrogenase was constructed based on the crystal structures of the Escherichia coli succinate dehydrogenase, the E. coli fumarate reductase, and the Wolinella succinogenes fumarate reductase. One FAD and three iron-sulfur clusters were docked into the Sdh1p and Sdh2p catalytic dimer. One b-type heme and two ubiquinone or inhibitor analog molecules were docked into the Sdh3p and Sdh4p membrane dimer. The model is consistent with numerous experimental observations. The calculated free energies of inhibitor binding are in excellent agreement with the experimentally determined inhibitory constants. Functionally important residues identified by mutagenesis of the SDH3 and SDH4 genes are located near the two proposed quinone-binding sites, which are separated by the heme. The proximal quinone-binding site, located nearest the catalytic dimer, has a considerably more polar environment than the distal site. Alternative low energy conformations of the membrane subunits were explored in a molecular dynamics simulation of the dimer embedded in a phospholipid bilayer. The simulation offers insight into why Sdh4p Cys-78 may be serving as the second axial ligand for the heme instead of a histidine residue. We discuss the possible roles of heme and of the two quinone-binding sites in electron transport.  相似文献   

6.
Hattori K  Matsui H 《Anaerobe》2008,14(2):87-93
Diversity of fumarate reducing (dissimilating) bacteria in the bovine rumen was analyzed by both culture dependent and independent methodologies. A total of 39 strains were isolated by using three different media and belonged to three different phyla (Proteobacteria, Fusobacteria, and Firmicutes). A primer set that amplified the fumarate reductase gene (frdA) from Proteobacteria was developed and two frdA clone libraries were constructed. Identities of deduced amino acid sequences of cloned frdA amplicons against known sequences ranged from 58% to 85% suggesting the presence of unknown fumarate reducing bacteria. This is the first report on the diversity of fumarate reducing bacteria in the rumen.  相似文献   

7.
Abstract A collection of 10 Gram-negative bacteria was examined for the presence of a fumarate reductase related to that of Escherichia coli K-12. When the frd genes encoding the E. coli enzyme were used as DNA:DNA hybridization probes good signals were obtained from all members of the family Enterobacteriaceae. No significant hybridization was detected, even under non-stringent conditions, with the well characterized fumarate reducer Vibrio succinogenes or with Pseudomonas aeruginosa . These findings were confirmed and extended by immuno-diffusion studies using cell membranes and antiserum against the E. coli reductase. Precipitin lines were observed in all cases where frd homologies were detected. It was concluded that the V. succinogenes enzyme differs extensively from the E. coli fumarate reductase.  相似文献   

8.
Oxidative stress is created in aerobic organisms when molecular oxygen chemically oxidizes redox enzymes, forming superoxide (O2*-) and hydrogen peroxide (H2O2). Prior work identified several flavoenzymes from Escherichia coli that tend to autoxidize. Of these, fumarate reductase (Frd) is notable both for its high turnover number and for its production of substantial O2*- in addition to H2O2. We have sought to identify characteristics of Frd that predispose it to this behavior. The ability of excess succinate to block autoxidation and the inhibitory effect of lowering the flavin potential indicate that all detectable autoxidation occurs from its FAD site, rather than from iron-sulfur clusters or bound quinones. The flavin adenine dinucleotide (FAD) moiety of Frd is unusually solvent-exposed, as evidenced by its ability to bind sulfite, and this may make it more likely to react adventitiously with O2*-. The autoxidizing species is apparently fully reduced flavin rather than flavosemiquinone, since treatments that more fully reduce the enzyme do not slow its turnover number. They do, however, switch the major product from O2*- to H2O2. A similar effect is achieved by lowering the potential of the proximal [2Fe-2S] cluster. These data suggest that Frd releases O2*- into bulk solution if this cluster is available to sequester the semiquinone electron; otherwise, that electron is rapidly transferred to the nascent superoxide, and H2O2 is the product that leaves the active site. This model is supported by the behavior of "aspartate oxidase" (aspartate:fumarate oxidoreductase), an Frd homologue that lacks Fe-S clusters. Its dihydroflavin also reacts avidly with oxygen, and H2O2 is the predominant product. In contrast, succinate dehydrogenase, with high potential clusters, generates O2*- exclusively. The identities of enzyme autoxidation products are significant because O2*- and H2O2 damage cells in different ways.  相似文献   

9.
Fumarate reductase was isolated and purified 100-fold to homogeneity from Desulfovibrio multispirans, a new species of sulfate-reducing bacteria. The enzyme contained 1 mol of non-covalently bound FAD and four subunits with Mr 45,000, 32,000, 30,000 and 27,000. EPR spectroscopy showed the existence of two iron-sulfur clusters. The absorption spectrum showed a broad region of high absorbance from 450 nm to 300 nm with a protein peak at 278 nm. The ratio of A278:A400 was 2.60. The specific activity was 110 mumoles H2/mg of protein. The Km for fumarate was 2.5 mM. The activation energy was 8.7 kcal/mol. Electron transport from H2 to fumarate in intact cells was inhibited by 2-heptyl-4-hydroxy-quinoline-N-oxide, a quinone inhibitor, indicating the participation of quinone (probably menaquinone) in fumarate reduction.  相似文献   

10.
The nucleotide sequence of a 2.7-kilobase segment of DNA containing the sdhA and sdhB genes encoding the flavoprotein (Fp, sdhA) and iron-sulfur protein (Ip, sdhB) subunits of the succinate dehydrogenase of Bacillus subtilis was determined. This sequence extends the previously reported sequence encoding the cytochrome b558 subunit (sdhC) and completes the sequence of the sdh operon, sdhCAB. The predicted molecular weights for the Fp and Ip subunits, 65,186 (585 amino acids) and 28,285 (252 amino acids), agreed with the values determined independently for the labeled Fp and Ip antigens, although it appeared that the B. subtilis Fp was not functional after expression of the sdhA gene in Escherichia coli. Both subunits closely resembled the corresponding Fp and Ip subunits of the succinate dehydrogenase (SDH) and fumarate reductase of E. coli in size, composition, and amino acid sequence. The sequence homologies further indicated that the B. subtilis SDH subunits are equally related to the SDH and fumarate reductase subunits of E. coli but are less closely related than are the corresponding pairs of E. coli subunits. The regions of highest sequence conservation were identifiable as the catalytically significant flavin adenine dinucleotide-binding sites and cysteine clusters of the iron-sulfur centers.  相似文献   

11.
12.
A potential novel fumarate reductase gene designated frd1A was isolated by screening a marine metagenomic library through a sequence-based strategy. Sequence analyses indicated that Frd1A and other putative fumarate reductases were closely related. The putative fumarate reductase gene was subcloned into a pETBlue-2 vector and expressed in Escherichia coli Tuner(DE3)pLac? cells. The recombinant protein was purified to homogeneity. Functional characterization by high-performance liquid chromatography demonstrated that the recombinant Frd1A protein could catalyze the hydrogenation of fumarate to succinate acid. The Frd1A protein displayed an optimal activity at pH 7.0 and 28 °C, which could be stimulated by adding metal ions such as Zn2+ and Mg2+. The Frd1A enzyme showed a comparable affinity and catalytic efficiency under optimal reaction conditions: k m?=0.227 mmol/L, v max= 29.9 U/mg, and k cat/k m=5.44?×?104 per mol/s. The identification of Frd1A protein underscores the potential of marine metagenome screening for novel biomolecules.  相似文献   

13.
(1) The role of fumarate metabolism in the microaerophily of the Campylobacter genus and the effects of therapeutic agents against it were investigated. (2) NMR spectroscopy was employed to determine the properties of Campylobacter fumarase (Fum) and fumarate reductase (Frd). Radiotracer analysis was used to determine the production of carbon dioxide by Campylobacter cells. Standard microbiological techniques were used to measure the effects of environmental conditions and inhibitors on bacterial growth. (3) All Campylobacter species tested showed both Fum and Frd activities. Frd activity was observed with or without the addition of an exogenous electron donor in the particulate fractions obtained from lysates. Fumarate was oxidized to carbon dioxide via the acetyl-CoA cleavage pathway. The genes encoding proteins involved in fumarate metabolism were identified in the Campylobacter jejuni genome. Cells grew better in atmospheres with 5 and 10% oxygen levels. Fum activity was the same in cultures grown under different oxygen tensions and did not vary with the age of cultures. Frd activity was higher in cultures which grew at faster rates and decreased with the age of cultures. Four Frd inhibitors showed bactericidal effects against Campylobacter spp. with different potencies. The relative strengths of inhibition of the compounds followed the same order as the bactericidal effects. (4) The results suggested that Frd and Fum are constitutive and play a fundamental role in these microaerophiles which show characteristics of anaerobic metabolism, and that the Frd inhibitors tested would not be of therapeutic use.  相似文献   

14.
15.
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F. succinogenes S85 was cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacterial cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F. succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation.  相似文献   

16.
The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from nitrate is catalysed exclusively by periplasmic respiratory enzymes.  相似文献   

17.
A redox protein gene (PH0178) with high sequence homology to a glutaredoxin from Pyrococcus furiosus and a thioredoxin reductase homologue gene (PH1426) were found in the genome sequence of Pyrococcus horikoshii. These two genes were cloned and the corresponding expressed proteins were characterized. The redox protein from PH0178 had strong thioredoxin-like activity, but no glutaredoxin activity. The protein from PH1426 had some reductase activity against thioredoxin from Escherichia coli as well as the redox protein (PH0178). The protein from PH1426 was a typical, homodimeric flavoprotein. These results indicate that the redox protein (PH0178) is not a glutaredoxin but, rather, a new protein-disulfide oxidoreductase that is involved in a thioredoxin-like system with thioredoxin reductase (PH1426) in P. horikoshii. The redox protein and thioredoxin reductase retained their full activities for over 1h at 100 degrees C. The redox potential of the redox protein was similar to that of thioredoxin from E. coli and lower than that of glutathione. Site-directed mutagenesis studies revealed that the active site of the redox protein corresponds to a CPYC sequence, located in the middle of the sequence.  相似文献   

18.
19.
20.
DNA fragments encoding streptococcal NADH peroxidase (NPXase) have been amplified, cloned and sequenced from the genome of Streptococcus (Enterococcus) faecalis 10C1 (ATCC 11700). The NPXase gene (npr) comprises 1341 base-pairs and is preceded by a typical ribosome binding site. Upstream from the structural gene, putative -10 and -35 promoter regions have been identified, as has a possible factor-independent terminator that occurs in 3'-flanking sequences. The deduced relative molecular mass (Mr = 49,551), amino acid composition and isoelectric point of NPXase are in good agreement with previous values obtained with the purified enzyme. In addition, three sequenced peptides totaling approximately 20% of the protein were located in the npr gene product. From the sequencing data the deduced NPXase sequence shares low but significant homology with the flavoprotein disulfide reductase class of enzymes ranging from 21% for glutathione reductase (GRase) to 28% for thioredoxin reductase. Alignment of NPXase to Escherichia coli GRase allowed the identification of three previously reported fingerprints for the FAD, NADP+ and central domains of GRase, in the peroxidase sequence. In addition, Cys42 of NPXase, which is present as an unusual stabilized cysteine-sulfenic acid in the oxidized enzyme, aligns favorably with the charge-transfer cysteine in E. coli GRase, and both residues closely follow FAD-binding folds found near their respective amino termini. Such sequence characteristics can also be seen in mercuric reductase, lipoamide dehydrogenase and trypanothione reductase, suggesting that all these enzymes may have originally diverged from a common ancestor. Sequences that are on average 50% identical with three previously reported peptides of the related streptococcal NADH oxidase were also identified in the NPXase primary structure, suggesting a strong similarity between these flavoenzymes. Using the E. coli phage T7 expression system the npr gene has now been overexpressed in an E. coli genetic background. The resultant overexpressing clone produced a recombinant NPXase that was catalytically active and immunoreactive to NPXase antisera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号