首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequistie for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10(-3)M and for peroxidatic activity of catalase at 10(-1)M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10(-3)M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10(-1)M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2-0.5 mu) particles similar to small peroxisomes described in various other cell-types.  相似文献   

2.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

3.
Horseradish peroxidase was conjugated to Staphylococcal protein A by three different two-step procedures using an increasing excess of peroxidase in the second step reaction. The yield of conjugated protein A was analyzed by SDS-polyacrylamide gel electrophoresis. Conjugation of peroxidase to protein A with benzoquinone or glutaraldehyde as cross-linking reagents at a 3- to 4-fold molar excess of peroxidase resulted in a high yield of coupled protein A with conjugates of low molecular size. Conjugation of peroxidase to protein A by the periodate method resulted in a high yield of coupled protein A with polymeric conjugates of large molecular size. Based on these results, conjugates produced with glutaraldehyde as cross-linking reagents were further analyzed. The capacity of the conjugates to precipitate human immunoglobulin evaluated by radial immunodiffusion was found to be reduced to about 50% of that of native protein A. Conjugates produced with glutaraldehyde as cross-linking reagent retained 70% of the enzyme activity of native peroxidase.  相似文献   

4.
An immobilized enzyme system has been developed and employed to determine the concentration of sialic acid (N-acetylneuraminic acid) in human serum and urine. Two enzyme pairs, neuramindiase-Neu-5-Ac lyase and pyruvate oxidase-peroxidase, have been respectively co-immobilized onto 1,12-aminododecane-agarose with glutaraldehyde. The relative specific activity of the co-immobilized neuraminidase and Neu-5-Ac lyase were 60% and 78%, and those of pyruvate oxidase and peroxidase were 50% and 95% of the corresponding soluble enzymes, respectively. The optimal reaction pH at 37 degrees C for each of the co-immobilized enzymes was about one pH unit higher than that of the corresponding soluble enzyme. The optimal reaction temperature of each enzyme was increased as a result of immobilization. The thermal stability at 45 degrees C of the immobilized neuraminidase, Neu-5-Ac lyase, pyruvate oxidase, and peroxidase were increased 80-, 83-, 115-, and 147-fold, respectively. Km and Vm of each immobilized and co-immobilized enzyme have also been determined. The system provided a convenient and rapid method to determine the concentration of total sialic acid without pretreatment of the sample. The results correlated satisfactorily with those obtained by using a soluble enzyme system. The co-immobilized enzymes were stable for at least 1 year of 500 tests when used repeatedly. The system is thus a reproducible and reliable novel assay method for sialic acid in the serum or urine sample.  相似文献   

5.
The interaction between poly(α,L -lysine) (DP = 180) and glutaraldehyde was investigated in dilute aqueous solution by measurement of the kinetics of proton release at constant pH and temperature and at various concentrations of the reaction components. Under various conditions, the release of protons at constant pH appeared kinetically to be composed of at least two steps: an initial zero-order reaction, followed by a slower reaction. At excess of polylysine amino groups, the pH optimum for the rates of reaction was at pH 9–10 (24–25°C). Under the conditions used and at pH 8, the initial rate of the second kinetic step was proportional to the glutaraldehyde concentration and was practically independent of polylysine concentration at pH 8 and 8.6, at an excess of amino groups. At pH values of 7, 8, and 8.6 the apparent overall energy of activation for the second kinetic step was 18–19 kcal/mole (temp. range 4–40°C). Comparing acetaldehyde with the difunctional glutaraldehyde, it was found that the rate of proton release was much smaller in the case of acetaldehyde. Comparing n-butylamine with the macromolecular polylysine at equal concentrations of amino groups, the rates of proton release were much smaller in the case of n-butylamine. Collagen in aqueous medium also interacted with glutaraldehyde in a manner analogous to polylysine, although the conditions were not quite comparable. In the case of collagen, the initial fast proton liberation step was relatively much larger than in the case of polylysine. A reaction scheme for the initial reaction steps is being proposed which includes primary complex formation between glutaraldehyde and polylysine. This dialdehyde–polyamino acid system is considered to serve as a model for tanning processes of hides and for fixation procedures.  相似文献   

6.
Summary The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequisite for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10−3 M and for peroxidatic activity of catalase at 10−1 M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10−3 M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10−1 M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2–0.5 μ) particles similar to small peroxisomes described in various other cell-types. This work was presented in part at the twenty-fifth Annual Meeting of the Histochemical Society, April 5–6, 1974. Atlantic City, N.J., J. Histochem. Cytochem.22, 288 (1974).  相似文献   

7.
A study of the indole-3-acetate reaction with horse-radish peroxidase, in the absence or presence of hydrogen peroxide, has been performed, employing rapid scan and conventional spectrophotometry. We present here the first clear spectral evidence, obtained on the millisecond time scale, indicating that at pH 5.0 and for high [enzyme/substrate] ratios peroxidase compound III is formed. Most, if not all, of the compound III is formed by oxygenation of the ferrous peroxidase. There is an inhibitory effect of superoxide dismutase and histidine on compound III formation which indicates the involvement of the active oxygen species superoxide and singlet oxygen. It is concluded that the oxidation of indole-3-acetate by horseradish peroxidase at pH 5.0 proceeds through compound III formation to the catalytically inactive forms P-670 and P-630. A reaction path in which the enzyme is directly reduced by indole-3-acetate might be involved as an initiation step. Rapid scan spectral data, which indicate differences in the formation and decay of enzyme intermediate compounds at pH 7.0, in comparison with those observed at pH 5.0, are also presented. At pH 7.0 compound II is a key intermediate in oxidation--peroxidation of substrate. Mechanisms of reactions consistent with the experimental data are proposed and discussed.  相似文献   

8.
Calcium alginate–starch hybrid gel was employed as an enzyme carrier both for surface immobilization and entrapment of bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase retained 52% of the initial activity while surface immobilized and glutaraldehyde crosslinked enzyme showed 63% activity. A comparative stability of both forms of immobilized bitter gourd peroxidase was investigated against pH, temperature and chaotropic agent; like urea, heavy metals, water-miscible organic solvents, detergent and inhibitors. Entrapped peroxidase was significantly more stable as compared to surface immobilized form of enzyme. The pH and temperature-optima for both immobilized preparations were the same as for soluble bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase showed 75% of the initial activity while the surface immobilized and crosslinked bitter gourd peroxidase retained 69% of the original activity after its seventh repeated use.  相似文献   

9.
Rate constants for the reaction between horseradish peroxidase compound I and p-cresol have been determined at several values of pH between 2.98 and 10.81. These rate constants were used to construct a log (rate) versus pH profile from which it is readily seen that the most reactive form of the enzyme is its most basic form within this pH range so that base catalysis is occurring. At the maximum rate a second order rate constant of (5.1 +/- 0.3) x 10(-7) M-1 s-1 at 25 degrees is obtained. The activation energy of the reaction at the maximum rate was determined from an Arrhenius plot to be 5.0 +/- 0.5 kcal/mol. Evidence for an exception to the generally accepted enzymatic cycle of horseradish peroxidase is presented. One-half molar equivalent of p-cresol can convert compound I quantitatively to compound II at high pH, whereas usually this step requires 1 molar equivalent of reductant. The stoichiometry of this reaction is pH-dependent.  相似文献   

10.
The cytochrome c oxidase activity of the bovine heart enzyme decreases substantially at alkaline pH, from 650 s(-1) at pH 7.0 to less than 10 s(-1) at pH 9.75. In contrast, the cytochrome c peroxidase activity of the enzyme shows little or no pH dependence (30-50 s(-1)) at pH values greater than 8.5. Under the conditions employed, it is demonstrated that the dramatic decrease in oxidase activity at pH 9.75 is fully reversible and not due to a major alkaline-induced conformational change in the enzyme. Furthermore, the Km values for cytochrome c interaction with the enzyme were also not significantly different at pH 7.8 and pH 9.75, suggesting that the pH dependence of the activity is not due to an altered interaction with cytochrome c at alkaline pH. However, at alkaline pH, the steady-state reduction level of the hemes increased, consistent with a slower rate of electron transfer from heme a to heme a3 at alkaline pH. Since it is well established that the rate of electron transfer from heme a to heme a3 is proton-coupled, it is reasonable to postulate that at alkaline pH, proton uptake becomes rate-limiting. The fact that this is not observed when hydrogen peroxide is used as a substrate in place of O2 suggests that the rate-limiting step is proton uptake via the K-channel associated with the reduction of the heme a3/CuB center prior to the reaction with O2. This step is not required for the reaction with H2O2, as shown previously in the examination of mutants of bacterial oxidases in which the K-channel was blocked. It is concluded that at pH values near 10, the delivery of protons via the K-channel becomes the rate-limiting step in the catalytic cycle with O2, so that the behavior of the bovine enzyme resembles that of the K-channel mutants in the bacterial enzymes.  相似文献   

11.
Whole cells of Escherichia coli having high aspartase (L-asparate ammonialyase, EC 4.3.1.1) activity were immobilized by entrapping into a kappa-carrageenan gel. The obtained immobilized cells were treated with glutaraldehyde or with glutaraldehyde and hexamethylenediamine. The enzymic properties of three immobilized cell preparations were investigated, and compared with those of the soluble aspartate. The optimum pH of the aspartase reaction was 9.0 for the three immobilized cell preparations and 9.5 for the soluble enzyme. The optimum temperature for three immobilized cell preparations was 5--10 degrees C higher than that for the soluble enzyme. The apparent Km values of immobilized cell preparations were about five times higher than that of the soluble enzyme. The heat stability of intact cells was increased by immobilization. The operational stability of the immobilized cell columns was higher at pH 8.5 than at optimum pH of the aspartase reaction. From the column effluents, L-aspartic acid was obtained in a good yield.  相似文献   

12.
A modified cytochrome c peroxidase was prepared by reconstituting apocytochrome c peroxidase with protoheme in which both heme propionic acid groups were converted to the methyl ester derivatives. The modified enzyme reacted with hydrogen peroxide with a rate constant of (1.3 +/- 0.2) x 10(7) M-1 s-1, which is 28% that of the native enzyme. The reaction between the modified enzyme and hydrogen peroxide was pH-dependent with an apparent pK of 5.1 +/- 0.1 compared to a value of 5.4 +/- 0.1 for the native enzyme. These observations support the conclusion that the apparent ionization near pH 5.4, which influences the hydrogen peroxide-cytochrome c peroxidase reaction is not due to the ionization of the propionate side chains of the heme group in the native enzyme. A second apparent ionization, with pK of 6.1 +/- 0.1, influences the spectrum of the modified enzyme which changes from a high spin type at low pH to a low spin type at high pH.  相似文献   

13.
The reaction between indole 3-acetic acid and horseradish peroxidase   总被引:7,自引:0,他引:7  
Three distinct phases of the reaction between indole 3-acetic acid (IAA) and horse-radish peroxidase (isoenzymes B and C) were observed. When 100 μm IAA was added to an aerobic solution of the 7μm enzyme at pH 5.0 the oxidation of IAA occurred after a lag time of several seconds, during which the enzyme was partially converted into peroxide Compound II. At a time when the lag time was over the conversion of the enzyme into a green hemoprotein, called P-670 suddenly occurred at a considerable speed. The oxidation of IAA was almost over at the end of the second phase. The last phase was the restoration of the free enzyme from the remaining Compound II.Ascorbate and cytochrome c peroxidase elongated the lag phase of IAA oxidation. From these inhibition experiments it was suggested that a peroxide form of IAA would react with peroxidase to form its peroxide compounds as does hydrogen peroxide and cause the oxidation of IAA. A reaction path that the enzyme is directly reduced by IAA might be involved as an initiation step but appeared to play no essential role in the oxidation of IAA at steady state.Contrary to the cases with dihydroxyfumarate and NADH, Superoxide dismutase did not inhibit the aerobic oxidation of IAA by peroxidase. IAA peroxide radical instead of superoxide anion radical was suggested to be an intermediate in the oxidation of IAA.On the basis of stoichiometric relation of reactions between IAA and peroxidase peroxide compounds a tentative scheme of P-670 formation during the oxidation of IAA was presented.  相似文献   

14.
Glutaraldehyde has been used for several decades as an effective crosslinking agent for many applications including sample fixation for microscopy, enzyme and cell immobilization, and stabilization of protein crystals. Despite of its common use as a crosslinking agent, the mechanism and chemistry involved in glutaraldehyde crosslinking reaction is not yet fully understood. Here we describe feasibility study and results obtained from a new approach to investigate the process of protein crystals stabilization by glutaraldehyde crosslinking. It involves exposure of a model protein crystal (Lysozyme) to glutaraldehyde in alkaline or acidic pH for different incubation periods and reaction arrest by medium exchange with crystallization medium to remove unbound glutaraldehyde. The crystals were subsequently incubated in diluted buffer affecting dissolution of un-crosslinked crystals. Samples from the resulting solution were subjected to protein composition analysis by gel electrophoresis and mass spectroscopy while crosslinked, dissolution resistant crystals were subjected to high resolution X-ray structural analysis. Data from gel electrophoresis indicated that the crosslinking process starts at specific preferable crosslinking site by lysozyme dimer formation, for both acidic and alkaline pH values. These dimer formations were followed by trimer and tetramer formations leading eventually to dissolution resistant crystals. The crosslinking initiation site and the end products obtained from glutaraldehyde crosslinking in both pH ranges resulted from reactions between lysine residues of neighboring protein molecules and the polymeric form of glutaraldehyde. Reaction rate was much faster at alkaline pH. Different reaction end products, indicating different reaction mechanisms, were identified for crosslinking taking place under alkaline or acidic conditions.  相似文献   

15.
Among enzyme immobilization techniques, the preparation of cross‐linked enzyme aggregates has shown promising results in biocatalysis, because they are easy to prepare, versatile, and cheap. The method involves the precipitation of enzymes with ammonium sulfate or an organic solvent and subsequent cross‐linking with glutaraldehyde. However, the Schiff base produced with glutaraldehyde is reversible and can be broken with acids or bases, releasing proteins to the reaction medium. To solve this problem, we propose replacing glutaraldehyde with diepoxide compounds to obtain an irreversible secondary amine bond. Such a substitution avoids protein leakage during the biocatalytic process, contamination of the final products, and loss of enzyme. It also improves the synthesis of the biocatalyst, because, while the Schiff base is favored at mildly acidic pH, the epoxide reaction can be made at the optimal enzyme pH, assuring its structural stability and catalytic performance. The proposed method has been successfully used in the production and optimization of aldolase epoxy‐cross‐linked aggregates, which retain 98% activity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1425–1429, 2017  相似文献   

16.
《Process Biochemistry》2008,43(2):125-131
Tyrosinase from mushroom was immobilized as a cross-linked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and cross-linking with glutaraldehyde. The effects of precipitation and cross-linking on CLEA activity were investigated and the immobilized tyrosinase was characterized. Sixty percent ammonium sulfate saturation and 2% glutaraldehyde were used; a 3-h cross-linking reaction at room temperature, at pH 7.0 was performed; particle sizes of the aggregates were reduced; consequently, 100% activity recovery was achieved in CLEAs with enhanced thermal and storage stabilities. Slight changes in optimum pH and temperature values of the enzyme were recorded after immobilization. Although immobilization did not affect Vmax, substrate affinity of the enzyme increased. Highly stable CLEAs were also prepared from crude mushroom tyrosinase with 100% activity recovery.  相似文献   

17.
This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet–visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses.  相似文献   

18.
The quantitative relationships between removal efficiency of phenol and reaction conditions were investigated using Coprinus cinereus peroxidase. The most effective ratio of hydrogen peroxide to phenol was nearly 1/1 (mol/mol) at an adequate enzyme dose. 12.2 U of the enzyme was needed to remove 1 mg of phenol when our peroxidase preparation was used. At an insufficient peroxidase dose, the optimum pH value was 9.0, and lowering the reaction temperature led to the improvement of removal efficiency. At an excess peroxidase dose, almost 100% removal of phenol was obtained over a wide range of pH (5-9) and temperature (0-60 degrees C). Despite the presence of culture medium components, it was shown that Coprinus cinereus peroxidase had the same phenol polymerization performance as horseradish peroxidase or Arthromyces ramosus peroxidase.  相似文献   

19.
Formate dehydrogenase (FDH) is a stable enzyme that may be readily inactivated by the interaction with hydrophobic interfaces (e.g., due to strong stirring). This may be avoided by immobilizing the enzyme on a porous support by any technique. Thus, even if the enzyme is going to be used in an ultra-membrane reactor, the immobilization presents some advantages. Immobilization on supports activated with bromocianogen, polyethylenimine, glutaraldehyde, etc., did not promote any stabilization of the enzyme under thermal inactivation. However, the immobilization of FDH on highly activated glyoxyl agarose has permitted increasing the enzyme stability against any distorting agent: pH, T, organic solvent, etc. The time of support-enzyme reaction, the temperature of immobilization, and the activation of the support need to be optimized to get the optimal stability-activity properties. Optimized biocatalyst retained 50% of the offered activity and became 50 times more stable at high temperature and neutral pH. Moreover, the quaternary structure of this dimeric enzyme becomes stabilized by immobilization under optimized conditions. Thus, at acidic pH (conditions where the subunit dissociation is the first step in the enzyme inactivation), the immobilization of both subunits of the enzyme on glyoxyl-agarose has allowed the enzyme to be stabilized by hundreds of times. Moreover, the optimal temperature of the enzyme has been increased (even by 10 degrees C at pH 4.5). Very interestingly, the activity with NAD(+)-dextran was around 60% of that observed with free cofactor.  相似文献   

20.
Partially deacetylated chitin (PDAC) obtained by boiling chitin in 28.6% (w/w) sodium hydroxide was not dissolved when it was suspended in 2% acetic acid (pH 2.6) at 60°C for 12 h or autoclaved in acetate buffer (pH 5.0) for 20 min. The enzyme binding ability of the PDAC with glutaraldehyde was similar to that of chitosan. Immobilized pullulanase had low enzyme activity for high-molecular-weight material such as pullulan, but its activity for maltosyl β-cyclodextrin was almost the same as that of the free enzyme. The immobilized enzyme produced branched cyclodextrin through a reverse reaction in acetate buffer of pH 3.75 at 53°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号