首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reaction pathway for FokI on a supercoiled DNA with two sites was dissected by fast kinetics to reveal, in turn: the initial binding of a protein monomer to each site; the protein–protein association to form the dimer, trapping the loop; the subsequent phosphodiester hydrolysis step. The DNA motion that juxtaposes the sites ought on the basis of Brownian dynamics to take ~2 ms, but loop capture by FokI took 230 ms. Hence, DNA looping by FokI is rate limited by protein association rather than DNA dynamics. The FokI endonuclease also illustrated activation by looping: it cut looped DNA 400 times faster than unlooped DNA.  相似文献   

2.
Previous work has described the novel ability to modulate in vitro the activity of restriction endonuclease NaeI from Nocardia aerocoligenes by using cleavable DNA and spermidine [Conrad & Topal (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. In this paper we report the results of a study of 49 type II restriction enzymes from a variety of bacterial species. On the basis of the rates of cleavage observed, we found that in addition to expected cleavable sites a number of enzymes had slow and resistant cognate recognition sites. Resistant sites were identified for BspMI, NaeI, and NarI; slow sites were identified for HpaII, NaeI, and SacII. Cleavage of these sites was found to be significantly enhanced by the addition of cleavable DNA or spermidine. We demonstrate that for BspMI, as for NaeI, activator DNAs increased Vmax without altering Km, whereas for HpaII, NarI, and SacII activator DNAs decreased Km without changing Vmax. Comparison among the Kms for NaeI cleavage of several different substrates demonstrated that distant DNA sequences can affect DNA recognition by the activated enzyme. Our observations extend DNA activation of the Nocardia NaeI endonuclease to restriction endonucleases from Nocardia argentinensis (NarI), Bacillus species M (BspMI), Haemophilus parainfluenza (HpaII), and Streptomyces achromogenes (SacII). In addition, activation has now been found to affect slow as well as resistant recognition sites.  相似文献   

3.
J M Voigt  M D Topal 《Biochemistry》1990,29(6):1632-1637
The interactions of restriction enzymes with their cognate DNA recognition sequences present a model for protein-DNA interactions. We have investigated the effect of O6-methylguanine on restriction enzyme cleavage of DNA; O6-methylguanine is a carcinogenic lesion and a structural analogue of the biological restriction inhibitor N6-methyladenine. O6-Methylguanine was synthesized into oligonucleotides at unique positions. The oligonucleotides were purified and analyzed by high-pressure liquid chromatography to assure that, within the limits of our detection, O6-methylguanine was the only modified base present. These oligonucleotides were annealed with their complement so that cytosine, and in one case thymine, opposed O6-methylguanine. DNA cleavage by restriction enzymes that recognize a unique DNA sequence, HpaII, HhaI, HinPI, NaeI, NarI, PvuII, and XhoI, was inhibited by a single O6-methylguanine in place of guanine (adenine for PvuII) within the appropriate recognition sequences. However, only the modified strand was nicked by HpaII, NaeI, and XhoI with O6-methylguanine at certain positions, indicating asymmetric strand cleavage. For all the restriction enzymes studied but AhaII, BanI, and NarI, lack of double- or single-strand cleavage correlated with inability of the O6-methylguanine-containing recognition sequence to measurably bind enzyme. None of the restriction enzymes studied were inhibited by O6-methylguanine outside their cognate recognition sequences.  相似文献   

4.
Before cleaving DNA substrates with two recognition sites, the Cfr10I, NgoMIV, NaeI and SfiI restriction endonucleases bridge the two sites through 3D space, looping out the intervening DNA. To characterise their looping interactions, the enzymes were added to plasmids with two recognition sites interspersed with two res sites for site-specific recombination by Tn21 resolvase, in buffers that contained either EDTA or CaCl2 so as to preclude DNA cleavage by the endonuclease; the extent to which the res sites were sequestered into separate loops was evaluated from the degree of inhibition of resolvase. With Cfr10I, a looped complex was detected in the presence but not in the absence of Ca(2+); it had a lifetime of about 90 seconds. Neither NgoMIV nor NaeI gave looped complexes of sufficient stability to be detected by this method. In contrast, SfiI with Ca(2+) produced a looped complex that survived for more than seven hours, whereas its looping interaction in EDTA lasts for about four minutes. When resolvase was added to a SfiI binding reaction in EDTA followed immediately by CaCl2, the looped DNA was blocked from recombination while the unlooped DNA underwent recombination. By measuring the distribution between looped and unlooped DNA at various SfiI concentrations, and by fitting the data to a model for DNA binding by a tetrameric protein to two sites in cis, an equilibrium constant for the looping interaction was determined. The equilibrium constant was essentially independent of the length of DNA between the SfiI sites.  相似文献   

5.
Many proteins that interact with DNA perform or enhance their specific functions by binding simultaneously to multiple target sites, thereby inducing a loop in the DNA. The dynamics and energies involved in this loop formation influence the reaction mechanism. Tethered particle motion has proven a powerful technique to study in real time protein-induced DNA looping dynamics while minimally perturbing the DNA–protein interactions. In addition, it permits many single-molecule experiments to be performed in parallel. Using as a model system the tetrameric Type II restriction enzyme SfiI, that binds two copies of its recognition site, we show here that we can determine the DNA–protein association and dissociation steps as well as the actual process of protein-induced loop capture and release on a single DNA molecule. The result of these experiments is a quantitative reaction scheme for DNA looping by SfiI that is rigorously compared to detailed biochemical studies of SfiI looping dynamics. We also present novel methods for data analysis and compare and discuss these with existing methods. The general applicability of the introduced techniques will further enhance tethered particle motion as a tool to follow DNA–protein dynamics in real time.  相似文献   

6.
Proteins interacting at multiple sites on DNA via looping play an important role in many fundamental biochemical processes. Restriction endonucleases that must bind at two recognition sites for efficient activity are a useful model system for studying such interactions. Here we used single DNA manipulation to study sixteen known or suspected two-site endonucleases. In eleven cases (BpmI, BsgI, BspMI, Cfr10I, Eco57I, EcoRII, FokI, HpaII, NarI, Sau3AI and SgrAI) we found that substitution of Ca2+ for Mg2+ blocked cleavage and enabled us to observe stable DNA looping. Forced disruption of these loops allowed us to measure the frequency of looping and probability distributions for loop size and unbinding force for each enzyme. In four cases we observed bimodal unbinding force distributions, indicating conformational heterogeneity and/or complex binding energy landscapes. Measured unlooping events ranged in size from 7 to 7500 bp and the most probable size ranged from less than 75 bp to nearly 500 bp, depending on the enzyme. In most cases the size distributions were in much closer agreement with theoretical models that postulate sharp DNA kinking than with classical models of DNA elasticity. Our findings indicate that DNA looping is highly variable depending on the specific protein and does not depend solely on the mechanical properties of DNA.  相似文献   

7.
Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor.  相似文献   

8.
NaeI endonuclease binding to pBR322 DNA induces looping.   总被引:9,自引:0,他引:9  
Previous work has demonstrated the existence of both resistant and cleavable NaeI sites. Cleavable sites introduced on exogenous DNA can act in trans to increase the catalysis of NaeI endonuclease cleavage at resistant sites without affecting the apparent binding affinity of the enzyme for the resistant site [Conrad, M., & Topal, M. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. This activation suggests allosteric regulation of NaeI cleavage by distant cis- and trans-acting sites in DNAs containing both resistant and cleavable sites. Plasmid pBR322 contains four NaeI sites, at least one of which is resistant to cleavage. Electron microscopy is used here to demonstrate that NaeI endonuclease simultaneously binds to multiple recognition sites in pBR322 DNA to form loops with NaeI protein bound at the loop's base. The maximum number of loops formed with a common base suggests four binding sites per enzyme molecule. Looping was inhibited by addition of enzyme-saturating amounts of double-stranded oligonucleotide containing an NaeI site, whereas another double-strand oligonucleotide without the NaeI site had no effect. The number of loops seen was not above background when double-stranded M13 DNA, which contains only a single NaeI recognition site, was used as substrate.  相似文献   

9.
In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such 'DNA looping' interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified ('diffusive') hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern.  相似文献   

10.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

11.
Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single‐molecule Förster resonance energy transfer (smFRET) of surface‐immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein‐induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA ‐ NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA ‐ protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites (“slow” trajectories) or by semi‐specific interactions of two DNA‐bound NgoMIV tetramers (“fast” trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules.  相似文献   

12.
13.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

14.
15.
16.
Several type II restriction endonucleases interact with two copies of their target sequence before they cleave DNA. Three such enzymes, NgoMIV, Cfr10I and NaeI, were tested on plasmids with one or two copies of their recognition sites, and on catenanes containing two interlinked rings of DNA with one site in each ring. The enzymes showed distinct patterns of behaviour. NgoMIV and NaeI cleaved the plasmid with two sites faster than that with one site and the catenanes at an intermediate rate, while Cfr10I gave similar steady-state rates on all three substrates. Both Cfr10I and NgoMIV converted the majority of the substrates with two sites directly to the products cut at both sites, while NaeI cleaved just one site at a time. All three enzymes thus synapse two DNA sites through three-dimensional space before cleaving DNA. With Cfr10I and NgoMIV, both sites are cleaved in one turnover, in a manner consistent with their tetrameric structures, while the cleavage of a single site by NaeI indicates that the second site acts not as a substrate but as an activator, as reported previously. The complexes spanning two sites have longer lifetimes on catenanes with one site in each ring than on circular DNA with two sites, which indicates that the catenanes have more freedom for site juxtaposition than plasmids with sites in cis.  相似文献   

17.
Looping and cleavage of single DNA molecules by the two-site restriction endonuclease Sau3AI were measured with optical tweezers. A DNA template containing many recognition sites was used, permitting loop sizes from approximately 10 to 10,000 basepairs. At high enzyme concentration, cleavage events were detected within 5 s and nearly all molecules were cleaved within 5 min. Activity decreased approximately 10-fold as the DNA tension was increased from 0.03 to 0.7 pN. Substituting Ca(2+) for Mg(2+) blocked cleavage, permitting measurement of stable loops. At low tension, the initial rates of cleavage and looping were similar (approximately 0.025 s(-1) at 0.1 pN), suggesting that looping is rate limiting. Short loops formed more rapidly than long loops. The optimum size decreased from approximately 250 to 45 basepairs and the average number of loops (in 1 min) from 4.2 to 0.75 as tension was increased from 0.03 to 0.7 pN. No looping was detected at 5 pN. These findings are in qualitative agreement with recent theoretical predictions considering only DNA mechanics, but we observed weaker suppression with tension and smaller loop sizes. Our results suggest that the span and elasticity of the protein complex, nesting of loops, and protein-induced DNA bending and wrapping play an important role.  相似文献   

18.
19.
We analyze looping of thin charged elastic filaments under applied torques and end forces, using the solution of linear elasticity theory equations. In application to DNA, we account for its polyelectrolyte character and charge renormalization, calculating electrostatic energies stored in the loops. We argue that the standard theory of electrostatic persistence is only valid when the loop’s radius of curvature and close-contact distance are much larger than the Debye screening length. We predict that larger twist rates are required to trigger looping of charged rods as compared with neutral ones. We then analyze loop shapes formed on charged filaments of finite length, mimicking DNA looping by proteins with two DNA-binding domains. We find optimal loop shapes at different salt amounts, minimizing the sum of DNA elastic, DNA electrostatic, and protein elastic energies. We implement a simple model where intercharge repulsions do not affect the loop shape directly but can choose the energy-optimized shape from the allowed loop types. At low salt concentrations more open loops are favored due to enhanced repulsion of DNA charges, consistent with the results of computer simulations on formation of DNA loops by lac repressor. Then, we model the precise geometry of DNA binding by the lac tetramer and explore loop shapes, varying the confined DNA length and protein opening angle. The characteristics of complexes obtained, such as the total loop energy, stretching forces required to maintain its shape, and the reduction of electrostatic energy with increment of salt, are in good agreement with the outcomes of more elaborate numerical calculations for lac-repressor-induced DNA looping.  相似文献   

20.
Recently, it was proposed that DNA looping by the λ repressor (CI protein) strengthens repression of lytic genes during lysogeny and simultaneously ensures efficient switching to lysis. To investigate this hypothesis, tethered particle motion experiments were performed and dynamic CI-mediated looping of single DNA molecules containing the λ repressor binding sites separated by 2317 bp (the wild-type distance) was quantitatively analyzed. DNA containing all three intact operators or with mutated o3 operators were compared. Modeling the thermodynamic data established the free energy of CI octamer-mediated loop formation as 1.7 kcal/mol, which decreased to –0.7 kcal/mol when supplemented by a tetramer (octamer+tetramer-mediated loop). These results support the idea that loops secured by an octamer of CI bound at oL1, oL2, oR1 and oR2 operators must be augmented by a tetramer of CI bound at the oL3 and oR3 to be spontaneous and stable. Thus the o3 sites are critical for loops secured by the CI protein that attenuate cI expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号