首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To develop a better understanding of the interaction between retroviruses and their hosts, we have investigated the polymorphism in endogenous murine leukemia proviruses (MLVs). We used genomic libraries of wild mouse DNAs and PCR to analyze genetic variation in the proviruses found in wild mouse species, including Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus), Mus spretus, and Mus spicelegus, as well as some inbred laboratory strains. In this analysis, we detected several unique forms of sequence organization in the U3 regions of the long terminal repeats of these proviruses. The distribution of the proviruses with unique U3 structures demonstrated that xenotropic MLV-related proviruses were present only in M. musculus subspecies, while polytropic MLV-related proviruses were found in both M. musculus and M. spretus. Furthermore, one unique provirus from M. spicelegus was found to be equidistant from ecotropic provirus and nonecotropic provirus by phylogenetic analysis. This provirus, termed HEMV, was thus likely to be related to the common ancestor of these MLVs. Moreover, an ancestral type of polytropic MLV-related provirus was detected in M. spretus species. Despite their "ancestral" phylogenetic position, proviruses of these types are not widespread in mice, implying more-recent spread by infection rather than inheritance. These results imply that recent evolution of these proviruses involved alternating periods of replication as virus and residence in the germ line.  相似文献   

2.
A Linkage Map of Endogenous Murine Leukemia Proviruses   总被引:22,自引:4,他引:18       下载免费PDF全文
Thirty endogenous proviruses belonging to the modified polytropic (Mpmv) class of murine leukemia virus (MLV) were identified by proviral-cellular DNA junction fragment segregation in several sets of recombinant inbred mice. Twenty-six Mpmv loci were mapped to chromosomal regions by matching proviral strain distribution patterns to those of previously assigned genes. Like other endogenous nonecotropic MLVs, Mpmv loci were present on several chromosomes in all strains examined. We pooled recombinant inbred strain linkage data from 110 MLV loci and selected marker genes in order to construct a chromosomal linkage map. Every mouse chromosome was found to harbor at least one proviral insertion, and several regions contained multiple integrations. However, the overall distribution of the 110 mapped proviruses did not deviate significantly from a random distribution. Because of their polymorphism in inbred strains of mice, and the ability to score as many as 57 proviruses per strain using only three hybridization probes, the nonecotropic MLVs mapped in common strains of mice offer a significant advantage over older methods (e.g., biochemical or individual restriction fragment polymorphisms) as genetic markers. These endogenous insertion elements should also be useful for assessing strain purity, and for studying the relatedness of common and not-so-common inbred strains.  相似文献   

3.
We characterized endogenous proviruses in C57BL/6J, DBA/2J, and C3H/HeJ mouse strains with oligonucleotide probes derived from long terminal repeat (LTR) sequences of three classes of nonecotropic murine leukemia virus. The segregation of proviral-host DNA junction fragments was followed in BXH and BXD recombinant inbred (RI) strain sets, and most fragments mapped readily to defined chromosomal regions. Most of the LTR fragments appear to correspond to proviruses mapped previously with oligonucleotide env region probes of the same viral class. At least 22 elements represent new proviral loci, no more than half of which may be solo LTRs, and an additional six may correspond to proviruses identified previously with less specific hybridization probes. Together with proviruses identified previously with env probes, the LTR probe-reactive elements represent the majority of endogenous murine leukemia proviruses in the mouse genome.  相似文献   

4.
macroH2A1-dependent silencing of endogenous murine leukemia viruses   总被引:3,自引:1,他引:2       下载免费PDF全文
We show that macroH2A1 histone variants are important for repressing the expression of endogenous murine leukemia viruses (MLVs) in mouse liver. Intact MLV proviruses and proviruses with deletions in env were nearly silent in normal mouse liver and showed substantial derepression in macroH2A1 knockout liver. In contrast, MLV proviruses with a deletion in the 5′ end of pro-pol were expressed in normal liver and showed relatively low levels of derepression in knockout liver. macroH2A1 nucleosomes were enriched on endogenous MLVs, with the highest enrichment occurring on the 5′ end of pro-pol. The absence of macroH2A1 also led to a localized loss of DNA methylation on the 5′ ends of MLV proviruses. These results demonstrate that macroH2A1 histones have a significant role in silencing endogenous MLVs in vivo and suggest that specific internal MLV sequences are targeted by a macroH2A1-dependent silencing mechanism.  相似文献   

5.
We characterized 84 endogenous nonecotropic proviruses of NZB/B1NJ and SM/J inbred strains by examining proviral junction fragment segregation in recombinant inbred (RI) and backcross mice. Forty-five proviruses were shared with other laboratory strains, but 28 were unique to NZB/BINJ or SM/J. Proviral loci were located on 17 of the 19 mouse autosomes and on both sex chromosomes. These markers will facilitate gene mapping in the NXSM RI set and contribute to the pursuit of a more complete map of the mouse genome.  相似文献   

6.

Background

The genome of classical laboratory strains of mice is an artificial mosaic of genomes originated from several mouse subspecies with predominant representation (>90%) of the Mus m. domesticus component. Mice of another subspecies, East European/Asian Mus m. musculus, can interbreed with the classical laboratory strains to generate hybrids with unprecedented phenotypic and genotypic variations. To study these variations in depth we prepared the first genomic large insert BAC library from an inbred strain derived purely from the Mus m. musculus-subspecies. The library will be used to seek and characterize genomic sequences controlling specific monogenic and polygenic complex traits, including modifiers of dominant and recessive mutations.

Results

A representative mouse genomic BAC library was derived from a female mouse of the PWD/Ph inbred strain of Mus m. musculus subspecies. The library consists of 144 768 primary clones from which 97% contain an insert of 120 kb average size. The library represents an equivalent of 6.7 × mouse haploid genome, as estimated from the total number of clones carrying genomic DNA inserts and from the average insert size. The clones were arrayed in duplicates onto eight high-density membranes that were screened with seven single-copy gene probes. The individual probes identified four to eleven positive clones, corresponding to 6.9-fold coverage of the mouse genome. Eighty-seven BAC-ends of PWD/Ph clones were sequenced, edited, and aligned with mouse C57BL/6J (B6) genome. Seventy-three BAC-ends displayed unique hits on B6 genome and their alignment revealed 0.92 single nucleotide polymorphisms (SNPs) per 100 bp. Insertions and deletions represented 0.3% of the BAC end sequences.

Conclusion

Analysis of the novel genomic library for the PWD/Ph inbred strain demonstrated coverage of almost seven mouse genome equivalents and a capability to recover clones for specific regions of PWD/Ph genome. The single nucleotide polymorphism between the strains PWD/Ph and C57BL/6J was 0.92/100 bp, a value significantly higher than between classical laboratory strains. The library will serve as a resource for dissecting the phenotypic and genotypic variations between mice of the Mus m. musculus subspecies and classical laboratory mouse strains.  相似文献   

7.
The degree of development of the mechanisms of postcopulatory isolation was evaluated on the basis of experimental hybridization of representatives of three subspecies of M. musculus (M. m. musculus, M. m. wagneri, and M. m. gansuensis) and remote populations of the subspecies M. m. musculus. Experimental crosses between the different subspecies and populations indicated the presence of initial stages of postcopulatory reproductive isolation between some forms of house mice. In a number of crosses conducted between different populations and subspecies of M. musculus, asymmetry was observed. In one variant of mating, M. m. musculus (male) × M. m. wagneri (female), a reduced intensity of breeding and nonviability of pups were observed. A decrease in the intensity of reproduction was found in all variants of crosses that used male M. m. musculus from the city of Ishim. These data are assumed to confirm the previous assumption about the hybrid origin of mice inhabiting that city. The results confirm a significant level of divergence of the subspecies M. m. musculus and M. m. wagneri. Thus, initial stages both of post- and precopulatory isolation mechanisms between M. m. wagneri and M. m. musculus were shown.  相似文献   

8.
Inbred mice contain three classes of endogenous nonecotropic murine leukemia virus-related sequences, namely xenotropic, polytropic, and modified polytropic proviruses. Oligonucleotide probes specific for the three different classes were prepared and used to examine the diversity of endogenous sequences present in eight different strains of mice: HRS/J, BALB/cJ, A/J, AKR/J, C57BL/6J, DBA/2J, C57L/J, and C3H/HeJ. A high degree of polymorphism was observed. Overall, the strains showed between 17% (A/J and HRS/J) and 65% (C57BL/6J and C57L/J) shared proviruses, and only four proviruses were present in all eight strains. The similarity among the strains is due in part to the few proviruses present in all of the strains but also represents the independent assortment of a limited set of proviruses. These oligonucleotides provide a basis for determining the stability, distribution, and mutagenic potential of nonecotropic proviruses within the mouse genome.  相似文献   

9.
The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild‐derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units – OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory‐kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.  相似文献   

10.
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.  相似文献   

11.
12.
Most traits of biological importance, including traits for human complex diseases (e.g., obesity and diabetes), are continuously distributed. These complex or quantitative traits are controlled by multiple genetic loci called QTLs (quantitative trait loci), environments and their interactions. The laboratory mouse has long been used as a pilot animal model for understanding the genetic architecture of quantitative traits. Next-generation sequencing analyses and genome-wide SNP (single nucleotide polymorphism) analyses of mouse genomes have revealed that classical inbred strains commonly used throughout the world are derived from a few fancy mice with limited and non-randomly distributed genetic diversity that occurs in nature and also indicated that their genomes are predominantly Mus musculus domesticus in origin. Many QTLs for a huge variety of traits have so far been discovered from a very limited gene pool of classical inbred strains. However, wild M. musculus mice consisting of five subspecies widely inhabit areas all over the world, and hence a number of novel QTLs may still lie undiscovered in gene pools of the wild mice. Some of the QTLs are expected to improve our understanding of human complex diseases. Using wild M. musculus subspecies in Asia as examples, this review illustrates that wild mice are untapped natural resources for valuable QTL discovery.  相似文献   

13.
Mouse chromosomes, with the exception of the Y chromosome, are telocentric. The telomere at the p-arm is separated from the centromere by the tL1 sequence and TLC tandem repeats. A previous report showed that the TLC array was also conserved in other strains of the subgenus Mus. These results suggest that the TLC arrays promote the stable evolutionary maintenance of a telocentric karyotype in the subgenus Mus. In this study, we investigated the degree of conservation of TLC arrays among a variety of wild-derived inbred strains, all of which are descendants of wild mice captured in several areas of the world. Genomic PCR analysis indicates that the sequential order of telomere-tL1 is highly conserved in all strains, whereas tL1-TLC is not. Next, Southern blot analysis of DNAs isolated from a panel of mouse subspecies showed both Mus musculus domesticus and Mus musculus castaneus subspecies possess TLC arrays. Unexpectedly, this repeat appears to be lost in almost all Mus musculus musculus and Mus musculus molossinus subspecies, which show a clear geographic divide. These results indicate that either other unknown sequences were replaced by the TLC repeat or almost all M. m. musculus and M. m. molossinus subspecies do not have any sequence between the telomere and minor satellites. Our observation suggests that the TLC array might be evolutionarily unstable and not essential for murine chromosomal conformation. This is the first example of the subspecies-specific large genome alterations in mice.  相似文献   

14.
15.
Genetic differentiation of six subspecies of the house mouse Mus musculus (Mus musculus musculus, M. m. domesticus, M. m. castaneus, M. m. gansuensis, M. m. wagneri, and M. m. ssp. (bactrianus?) was examined using RAPD-PCR analysis. In all, 373 loci of total length of about 530 kb were identified. Taxonspecific molecular markers were detected and the levels of genetic differences among the subspecies were estimated. Different degree of subspecific genetic differentiation was shown. The most similar subspecies pairs were M. m. castaneus-M. m. domesticus and M. m. musculus-M. m. gansuensis. In our phylogenetic reconstruction, M. m. wagneri proved to be most different from all the other subspecies. Genetic distances between it and other subspecies were two-to threefold higher than those between the “good”species of the subgenus Mus (e.g., between M. m. musculus and M. spicilegus, M. musculus and M. abbotti). The estimates of genetic similarity and the phylogenetic relationships between six house mouse subspecies inferred from RAPD partially conformed to the results based on cytogenetic and allozyme data. However, they were considerably different from phylogenetic reconstructions based on sequencing of the control mtDNA region, which reflects mutual inconsistency of different systems of inheritance.  相似文献   

16.
Oligonucleotide probes specific for the Fv-1 N- and B-tropic host range determinants of the gag p30-coding sequence were used to analyze DNA clones of various murine leukemia virus (MuLV) and endogenous MuLV-related proviral genomes and chromosomal DNA from four mouse strains. The group of DNA clones consisted of ecotropic MuLVs of known Fv-1 host range, somatically acquired ecotropic MuLV proviruses, xenotropic MuLV isolates, and endogenous nonecotropic MuLV-related proviral sequences from mouse chromosomal DNA. As expected, the prototype N-tropism determinant is carried by N-tropic viruses of several different origins. All seven endogenous nonecotropic MuLV-related proviral sequence clones derived from RFM/Un mouse chromosomal DNA, although not recognized by the N probe, showed positive hybridization with the prototype B-tropism-specific probe. The two xenotropic MuLV clones derived from infectious virus (one of BALB:virus-2 and one of AKR xenotropic virus) failed to hybridize with the N- and B-tropic oligonucleotide probes tested and with one probe specific for NB-tropic Moloney MuLV. One of two endogenous xenotropic class proviruses derived from HRS/J mouse chromosomal DNA (J. P. Stoye and J. M. Coffin, J. Virol. 61:2659-2669, 1987) also failed to hybridize to the N- and B-tropic probes, whereas the other hybridized to the B-tropic probe. In addition, analysis of mouse chromosomal DNA from four strains indicates that hybridization with the N-tropic probe correlates with the presence or absence of endogenous ecotropic MuLV provirus, whereas the B-tropic probe detects abundant copies of endogenous nonecotropic MuLV-related proviral sequences. These results suggest that the B-tropism determinant in B-tropic ecotropic MuLV may arise from recombination between N-tropic ecotropic MuLV and members of the abundant endogenous nonecotropic MuLV-related classes including a subset of endogenous xenotropic proviruses.  相似文献   

17.
Jung YT  Wu T  Kozak CA 《Journal of virology》2003,77(23):12773-12781
The wild mouse species most closely related to the common laboratory strains contain proviral env genes of the xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs). To determine if the polytropic proviruses of Mus spretus contain functional genes, we inoculated neonates with Moloney MLV (MoMLV) or amphotropic MLV (A-MLV) and screened for viral recombinants with altered host ranges. Thymus and spleen cells from MoMLV-inoculated mice were plated on Mus dunni cells and mink cells, since these cells do not support the replication of MoMLV, and cells from A-MLV-inoculated mice were plated on ferret cells. All MoMLV-inoculated mice produced ecotropic viruses that resembled their MoMLV progenitor, although some isolates, unlike MoMLV, grew to high titers in M. dunni cells. All of the MoMLV-inoculated mice also produced nonecotropic virus that was infectious for mink cells. Sequencing of three MoMLV- and two A-MLV-derived nonecotropic recombinants confirmed that these viruses contained substantial substitutions that included the regions of env encoding the surface (SU) protein and the 5' end of the transmembrane (TM) protein. The 5' recombination breakpoint for one of the A-MLV recombinants was identified in RNase H. The M. spretus-derived env substitutions were nearly identical to the corresponding regions in prototypical laboratory mouse polytropic proviruses, but the wild mouse infectious viruses had a more restricted host range. The M. spretus proviruses contributing to these recombinants were also sequenced. The seven sequenced proviruses were 99% identical to one another and to the recombinants; only two of the seven had obvious fatal defects. We conclude that the M. spretus proviruses are likely to be recent germ line acquisitions and that they contain functional genes that can contribute to the production of replication-competent virus.  相似文献   

18.
《Mammalian Biology》2014,79(5):297-305
The house mouse, Mus musculus, was first introduced into New Zealand in significant numbers in the early to mid nineteenth century, with genomic components from different sources of the three subspecies M. m. domesticus, M. m. musculus and M. m. castaneus. M. m. domesticus is now widely distributed in New Zealand, with genomic and morphological evidence of M. m. musculus in a few scattered locations. M. m. domesticus/M. m. castaneus hybrids are dominant in the southern third of the South Island. We anticipated that there should be a definable southern contact zone between pure M. m. domesticus and M. m. domesticus/M. m. castaneus hybrids. We tested this hypothesis by screening 170 DNA samples from mice collected in the southern South Island, using a PCR technique which rapidly distinguishes the mitochondrial genomes of the three subspecies.All mice sampled from in or north of Lincoln (43.63° S) had only M. m. domesticus mtDNA, whereas all those from or further south than Hook (44.68° S) had M. m. castaneus mtDNA. Between the two sites, mice carrying mtDNA of both subspecies were found, sometimes in the same building. On present data, this contact zone extends approximately 50 km north to south and some 30 km inland. Classical tests with three nuclear DNA markers confirmed earlier work showing that the nuclear genomes of all mice appeared to be predominantly domesticus-like.We conclude that if purebred M. m. castaneus mice did originally reach New Zealand, extensive backcrossing with M. m. domesticus has made the castaneus nuclear genome virtually undetectable with the tests that we employ.  相似文献   

19.
Geographic origin of the Y Chromosomes in “old” inbred strains of mice   总被引:7,自引:0,他引:7  
Six distinct Y Chromosomes (Chr) were identified among 39 standard inbred strains of mice with five probes that identified Y Chr-specific restriction fragments on Southern blots. Three Y Chr types, distributed among 31 strains, were of Asian Mus musculus origin. The remaining three Y Chr types, distributed among eight strains, were of M. domesticus origin. The Asian source of the M. musculus Y Chr was confirmed by determining the DNA sequence of 221 bp from an open reading frame within the Sry (sex determining region Y) gene (Gubbay et al., Nature 346 245–250, 1990) in three inbred strains (C57BL/6J, AKR/J, and SWR/J) and comparing the sequence to the homologous sequences derived from wild caught European and Asian M. musculus males. These data indicate that a minimum of six male mice contributed to the formation of the old inbred strains.  相似文献   

20.
Variability of the nucleotide sequences of the second intron of the b1-chain of hemoglobin (Hbb-b1) and complete control region of mitochondrial DNA (D-loop) was studied in aboriginal and synanthropic populations of M. m. wagneri from Central Asia and M. m. gansuensis from South Siberia. A difference in the frequency of the Hbbw1 hemoglobin variant for natural and urban populations of mice was shown. All mice from natural habitats of studied areas have musculus type of mtDNA. Apparently, the substitution of taxon-specific mitochondrial haplotypes of wagneri, and gansuensis might occur due to the absorbing hybridization with nominate subspecies musculus, which is consistent with the results on nuclear DNA (Hbb-b1 gene) obtained in this work. Two differentiated haplogroups among aboriginal subspecies wagneri (d = 0.01), one of which included house mice from Turkmenistan, were discovered for the first time. This may indicate mtDNA introgression from synanthropic forms of Turkmenistan into natural populations of Kazakhstan mice. The type of mtDNA typical for the castaneus subspecies was detected in two individuals from the natural habitat of Kazakhstan and Turkmenistan; it had not been encountered in Central Asia before. It has been suggested that the gene flow of nuclear and mitochondrial genomes in microevolution processes in M. musculus is directed from the synanthropic forms towards wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号