首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
RhoE binds to ROCK I and inhibits downstream signaling   总被引:17,自引:0,他引:17       下载免费PDF全文
RhoE belongs to the Rho GTPase family, the members of which control actin cytoskeletal dynamics. RhoE induces stress fiber disassembly in a variety of cell types, whereas RhoA stimulates stress fiber assembly. The similarity of RhoE and RhoA sequences suggested that RhoE might compete with RhoA for interaction with its targets. Here, we show that RhoE binds ROCK I but none of the other RhoA targets tested. The interaction of RhoE with ROCK I was confirmed by coimmunoprecipitation of the endogenous proteins, and the two proteins colocalized on the trans-Golgi network in COS-7 cells. Although RhoE and RhoA were not able to bind ROCK I simultaneously, RhoE bound to the amino-terminal region of ROCK I encompassing the kinase domain, at a site distant from the carboxy-terminal RhoA-binding site. Overexpression of RhoE inhibited ROCK I-induced stress fiber formation and phosphorylation of the ROCK I target myosin light chain phosphatase. These data suggest that RhoE induces stress fiber disassembly by directly binding ROCK I and inhibiting it from phosphorylating downstream targets.  相似文献   

2.
3.
RhoE controls myoblast alignment prior fusion through RhoA and ROCK   总被引:2,自引:0,他引:2  
Differentiation of skeletal myoblasts into multinucleated myotubes is a multi-step process orchestrated by several signaling pathways. The Rho small G protein family plays critical roles both during myogenesis induction and myoblast fusion. We report here that in C2C12 myoblasts, expression of RhoE, an atypical member of this family, increases until the onset of myoblast fusion before resuming its basal level once fusion has occurred. We show that RhoE accumulates in elongated, aligned myoblasts prior to fusion and that its expression is also increased during injury-induced skeletal muscle regeneration. Moreover, although RhoE is not required for myogenesis induction, it is essential for myoblast elongation and alignment before fusion and for M-cadherin expression and accumulation at the cell-cell contact sites. Myoblasts lacking RhoE present with defective p190RhoGAP activation and RhoA inhibition at the onset of myoblast fusion. RhoE interacts also with the RhoA effector Rho-associated kinase (ROCK)I whose activity must be downregulated to allow myoblast fusion. Consistently, we show that pharmacological inactivation of RhoA or ROCK restores myoblast fusion in RhoE-deficient myoblasts. RhoE physiological upregulation before myoblast fusion is responsible for the decrease in RhoA and ROCKI activities, which are required for the fusion process. Therefore, we conclude that RhoE is an essential regulator of myoblast fusion.  相似文献   

4.
The molecular mechanism via which keratinocyte differentiation assembles multiple layers of cells (stratification) is poorly understood. We describe here a novel function of the Rho family member RhoE as a regulator of epidermal morphogenesis. RhoE protein levels are specifically and transiently up-regulated upon keratinocyte differentiation. RhoE up-regulation requires the activity of Rho kinase (ROCK) I, suggesting that both RhoE and ROCKI are important during keratinocyte differentiation. RhoE overexpression results in a striking enlargement of cell size and the number of stratified cells. In contrast, RhoE depletion induces hyperproliferation and delays initiation of keratinocyte differentiation. Interestingly, up-regulation of RhoE protein is seen primarily in basal, undifferentiated cells, in which commitment to differentiation and stratification takes place. RhoE activation in basal cells negatively modulates integrin adhesion, thereby facilitating detachment from the substratum and migration to form suprabasal layers. Thus, RhoE integrates two processes essential for keratinocyte differentiation and stratification: regulation of proliferative status and integrin adhesion.  相似文献   

5.
6.
Rho kinase (ROCK), a downstream effector of Rho GTPase, is a serine/threonine protein kinase that regulates many crucial cellular processes via control of cytoskeletal structures. The C-terminal PH-C1 tandem of ROCKs has been implicated to play an autoinhibitory role by sequestering the N-terminal kinase domain and reducing its kinase activity. The binding of lipids to the pleckstrin homology (PH) domain not only regulates the localization of the protein but also releases the kinase domain from the close conformation and thereby activates its kinase activity. However, the molecular mechanism governing the ROCK PH-C1 tandem-mediated lipid membrane interaction is not known. In this study, we demonstrate that ROCK is a new member of the split PH domain family of proteins. The ROCK split PH domain folds into a canonical PH domain structure. The insertion of the atypical C1 domain in the middle does not alter the structure of the PH domain. We further show that the C1 domain of ROCK lacks the diacylglycerol/phorbol ester binding pocket seen in other canonical C1 domains. Instead, the inserted C1 domain and the PH domain function cooperatively in binding to membrane bilayers via the unconventional positively charged surfaces on each domain. Finally, the analysis of all split PH domains with known structures indicates that split PH domains represent a unique class of tandem protein modules, each possessing distinct structural and functional features.  相似文献   

7.
We report the 2.1 A crystal structure of the core G protein domain of the unusual Rho family member RhoE/Rnd3 in complex with endogenous GTP and magnesium. Unlike other small G proteins, RhoE, along with two other proteins Rnd1/Rho6 and Rnd2/RhoN, does not hydrolyze GTP. The main reason for this is the presence of serines in the positions equivalent to Ala59 and Gln61 in Ras. The structure shows that there are still water molecules in similar positions to the waters thought to be involved in the hydrolysis reaction in other G proteins. The structure suggests three not necessarily exclusive explanations for the lack of hydrolysis. The lack of the conserved glutamine raises the energy of the transition state inhibiting hydrolysis. The serines may restrain the waters from moving closer to the GTP, a step that is required to attain the transition state. They also stabilize the GTP-bound conformation of switch II and could prevent conformational changes required during hydrolysis. By superposition of the RhoE structure on structures of Rho family proteins in complex with binding partners, we make predictions on RhoE interactions with these partners.  相似文献   

8.
To determine whether serine/threonine ROCK1 is activated by insulin in vivo in humans and whether impaired activation of ROCK1 could play a role in the pathogenesis of insulin resistance, we measured the activity of ROCK1 and the protein content of the Rho family in vastus lateralis muscle of lean, obese nondiabetic, and obese type 2 diabetic subjects. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic euglycemic clamp. Insulin-stimulated GDR was reduced 38% in obese nondiabetic subjects compared with lean, 62% in obese diabetic subjects compared with lean, and 39% in obese diabetic compared with obese nondiabetic subjects (all comparisons P < 0.001). Insulin-stimulated IRS-1 tyrosine phosphorylation is impaired 41-48% in diabetic subjects compared with lean or obese subjects. Basal activity of ROCK1 was similar in all groups. Insulin increased ROCK1 activity 2.1-fold in lean and 1.7-fold in obese nondiabetic subjects in muscle. However, ROCK1 activity did not increase in response to insulin in muscle of obese type 2 diabetic subjects without change in ROCK1 protein levels. Importantly, insulin-stimulated ROCK1 activity was positively correlated with insulin-mediated GDR in lean subjects (P < 0.01) but not in obese or type 2 diabetic subjects. Moreover, RhoE GTPase that inhibits the catalytic activity of ROCK1 by binding to the kinase domain of the enzyme is notably increased in obese type 2 diabetic subjects, accounting for defective ROCK1 activity. Thus, these data suggest that ROCK1 may play an important role in the pathogenesis of resistance to insulin action on glucose disposal in muscle of obese type 2 diabetic subjects.  相似文献   

9.
RhoE, a p53 target gene, was identified as a critical factor for the survival of human keratinocytes in response to UVB. The Rho family of GTPases regulates many aspects of cellular behavior through alterations to the actin cytoskeleton, acting as molecular switches cycling between the active, GTP-bound and the inactive, GDP-bound conformations. Unlike typical Rho family proteins, RhoE (also known as Rnd3) is GTPase-deficient and thus expected to be constitutively active. In this study, we investigated the response of cultured human keratinocyte cells to UVB irradiation. RhoE protein levels increase upon exposure to UVB, and ablation of RhoE induction through small interfering RNA resulted in a significant increase in apoptosis and a reduction in the levels of the pro-survival targets p21, Cox-2, and cyclin D1, as well as an increase of reactive oxygen species levels when compared with control cells. These data indicate that RhoE is a pro-survival factor acting upstream of p38, JNK, p21, and cyclin D1. HaCat cells expressing small interfering RNA to p53 indicate that RhoE functions independently of its known associates, p53 and Rho-associated kinase I (ROCK I). Targeted expression of RhoE in epidermis using skin-specific transgenic mouse model resulted in a significant reduction in the number of apoptotic cells following UVB irradiation. Thus, RhoE induction counteracts UVB-induced apoptosis and may serve as a novel target for the prevention of UVB-induced photodamage regardless of p53 status.  相似文献   

10.
The ROCK-I serine/threonine protein kinase mediates the effects of RhoA to promote the formation of actin stress fibres and integrin-based focal adhesions. ROCK-I phosphorylates the unconventional G-protein RhoE on multiple N- and C-terminal sites. These phosphorylation events stabilise RhoE, which functions to antagonise RhoA-induced stress fibre assembly. Here, we provide a molecular explanation for multi-site phosphorylation of RhoE from the crystal structure of RhoE in complex with the ROCK-I kinase domain. RhoE interacts with the C-lobe αG helix of ROCK-I by means of a novel binding site remote from its effector region, positioning its N and C termini proximal to the ROCK-I catalytic site. Disruption of the ROCK-I:RhoE interface abolishes RhoE phosphorylation, but has no effect on the ability of RhoE to disassemble stress fibres. In contrast, mutation of the RhoE effector region attenuates RhoE-mediated disruption of the actin cytoskeleton, indicating that RhoE exerts its inhibitory effects on ROCK-I through protein(s) binding to its effector region. We propose that ROCK-I phosphorylation of RhoE forms part of a feedback loop to regulate RhoA signalling.  相似文献   

11.
LIM-kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing factor, and regulates actin cytoskeletal reorganization. LIMK1 is activated by the small GTPase Rho and its downstream protein kinase ROCK. We now report the site of phosphorylation of LIMK1 by ROCK. In vitro kinase reaction revealed that the active forms of ROCK phosphorylated LIMK1 on the threonine residue and markedly increased its cofilin-phosphorylating activity. A LIMK1 mutant (T508A) with replacement of Thr-508 within the activation loop of the kinase domain by alanine was neither phosphorylated nor activated by ROCK. Replacement of Thr-508 by serine changed the ROCK-catalyzed phosphorylation residue from threonine to serine. A LIMK1 mutant with replacement of Thr-508 by two glutamates increased the kinase activity about 2-fold but was not further activated by ROCK. In addition, wild-type LIMK1, but not its T508A mutant, was activated by co-expression with ROCK in cultured cells. These results suggest that ROCK activates LIMK1 in vitro and in vivo by phosphorylation at Thr-508. Together with the recent finding that PAK1, a downstream effector of Rac, also activates LIMK1 by phosphorylation at Thr-508, these results suggest that activation of LIMK1 is one of the common targets for Rho and Rac to reorganize the actin cytoskeleton.  相似文献   

12.
In three-dimensional matrices cancer cells move with a rounded, amoeboid morphology that is controlled by ROCK-dependent contraction of acto-myosin. In this study, we show that PDK1 is required for phosphorylation of myosin light chain and cell motility, both on deformable gels and in vivo. Depletion of PDK1 alters the localization of ROCK1 and reduces its ability to drive cortical acto-myosin contraction. This form of ROCK1 regulation does not require PDK1 kinase activity, but instead involves direct binding of PDK1 to ROCK1 at the plasma membrane; PDK1 competes directly with RhoE for binding to ROCK1. In the absence of PDK1, negative regulation by RhoE predominates, causing reduced acto-myosin contractility and motility. This work uncovers a novel non-catalytic role for PDK1 in regulating cortical acto-myosin and cell motility.  相似文献   

13.
The CC chemokine eotaxin plays a pivotal role in local accumulation of eosinophils. Very little is known about the eotaxin signaling in eosinophils except the activation of the mitogen-activated protein (MAP) kinase family. The p21 G protein Rho and its substrate Rho-associated coiled-coil forming protein kinase (ROCK) regulate the formation of stress fibers and focal adhesions. In the present study, we studied the functional relevance of Rho and ROCK in eosinophils using the ROCK inhibitor (Y-27632) and exoenzyme C3, a specific Rho inhibitor. Eotaxin stimulates activation of Rho A and ROCK II in eosinophils. Exoenzyme C3 almost completely inhibited the ROCK activity, indicating that ROCK is downstream of Rho. We then examined the role of Rho and ROCK in eosinophil chemotaxis. The eotaxin-induced eosinophil chemotaxis was significantly inhibited by exoenzyme C3 or Y-27632. Because extracellular signal-regulated kinase (ERK)1/2 and p38 MAP kinases are activated by eotaxin and are critical for eosinophil chemotaxis, we investigated whether Rho and ROCK are upstream of these MAP kinases. C3 partially inhibited eotaxin-induced phosphorylation of ERK1/2 but not p38. In contrast, neither ERK1/2 nor p38 phosphorylation was abrogated by Y-27632. Both C3 and Y-27632 reduced reactive oxygen species production from eosinophils. We conclude that both Rho and ROCK are important for eosinophil chemotaxis and reactive oxygen species production. There is a dichotomy of downstream signaling pathways of Rho, namely, Rho-ROCK and Rho-ERK pathways. Taken together, eosinophil chemotaxis is regulated by multiple signaling pathways that involve at least ROCK, ERK, and p38 MAP kinase.  相似文献   

14.
15.
Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.  相似文献   

16.
Increased phosphorylation of myosin light chain (MLC) is necessary for the dynamic membrane blebbing that is observed at the onset of apoptosis. Here we identify ROCK I, an effector of the small GTPase Rho, as a new substrate for caspases. ROCK I is cleaved by caspase-3 at a conserved DETD1113/G sequence and its carboxy-terminal inhibitory domain is removed, resulting in deregulated and constitutive kinase activity. ROCK proteins are known to regulate MLC-phosphorylation, and apoptotic cells exhibit a gradual increase in levels of phosphorylated MLC concomitant with ROCK I cleavage. This phosphorylation, as well as membrane blebbing, is abrogated by inhibition of caspases or ROCK proteins, but both processes are independent of Rho activity. We also show that expression of active truncated ROCK I induces cell blebbing. Thus, activation of ROCK I by caspase-3 seems to be responsible for bleb formation in apoptotic cells.  相似文献   

17.
RhoE/Rnd3 is an atypical member of the Rho family of small GTPases. In addition to regulating actin cytoskeleton dynamics, RhoE is involved in the regulation of cell proliferation, survival, and metastasis. We examined RhoE expression levels during cell cycle and investigated mechanisms controlling them. We show that RhoE accumulates during G1, in contact-inhibited cells, and when the Akt pathway is inhibited. Conversely, RhoE levels rapidly decrease at the G1/S transition and remain low for most of the cell cycle. We also show that the half-life of RhoE is shorter than that of other Rho proteins and that its expression levels are regulated by proteasomal degradation. The expression patterns of RhoE overlap with that of the cell cycle inhibitor p27. Consistently with an involvement of RhoE in cell cycle regulation, RhoE and p27 levels decrease after overexpression of the F-box protein Skp2. We have identified a region between amino acids 231 and 240 of RhoE as the Skp2-interacting domain and Lys235 as the substrate for ubiquitylation. Based on our results, we propose a mechanism according to which proteasomal degradation of RhoE by Skp2 regulates its protein levels to control cellular proliferation.  相似文献   

18.
Migration of epithelial cell sheets, a process involving F-actin restructuring through Rho family GTPases, is both physiologically and pathophysiologically important. Our objective was to clarify the mechanisms whereby the downstream RhoA effector Rho-associated coil-coil-forming kinase (ROCK) influences coordinated epithelial cell motility. Although cells exposed to a pharmacological ROCK inhibitor (Y-27632) exhibited increased spreading in wound closure assays, they failed to migrate in a cohesive manner. Two main phenomena were implicated: the formation of aberrant protrusions at the migrating front and the basal accumulation of F-actin aggregates. Aggregates reflected increased membrane affiliation and detergent insolubility of the actin-binding protein ezrin and enhanced coassociation of ezrin with the membrane protein CD44. While F-actin aggregation following ROCK inhibition was recapitulated by inhibiting myosin light chain (MLC) phosphorylation with the MLC kinase inhibitor ML-7, the latter did not influence protrusiveness and, in fact, significantly decreased cell migration. Our results suggest that excessive protrusiveness downstream of ROCK inhibition reflects an influence of ROCK on F-actin stability via LIM kinase 1 (LIMK-1), which phosphorylates and inactivates cofilin. Y-27632 reduced the levels of both active LIMK-1 and inactive cofilin (phospho forms), and expression of a dominant negative LIMK-1 mutant stimulated leading edge protrusiveness. Furthermore, Y-27632-induced protrusions were partially reversed by overexpression of LIMK-1 to restore cofilin phosphorylation. In summary, our results provide new evidence suggesting that adhesive and protrusive events involved in organized epithelial motility downstream of ROCK are separately coordinated through the phosphorylation of (respectively) MLC and cofilin.  相似文献   

19.
Rho Kinase I (ROCK I) is a serine/threonine kinase that is involved in diverse cellular signaling. To further understand the physiological role of ROCK I and to identify and develop potent and selective inhibitors of ROCK I, we have overexpressed and purified a constitutively active dimeric human ROCK I (3-543) kinase domain using the Sf9-baculovirus expression system. In addition, using a limited proteolysis technique, we have identified a minimal functional subdomain of ROCK I that can be used in crystallization studies. The availability of multimilligram amounts of purified and well characterized functional human ROCK I kinase domains will be useful in screening and structural studies.  相似文献   

20.
Upon engagement by its ligand, the Fas receptor (CD95/APO-1) is oligomerized in a manner dependent on F-actin. It has been shown that ezrin, a member of the ERM (ezrin-radixin-moesin) protein family can link Fas to the actin cytoskeleton. We show herein that in Jurkat cells, not only ezrin but also moesin can associate with Fas. The same observation was made in activated human peripheral blood T cells. Fas/ezrin or moesin (E/M) association increases in Jurkat cells following Fas triggering and occurs concomitantly with the formation of SDS- and 2-ME-stable high molecular mass Fas aggregates. Ezrin and moesin have to be present together for the formation of Fas aggregates since down-regulation of either ezrin or moesin expression with small interfering RNAs completely inhibits Fas aggregate formation. Although FADD (Fas-associated death domain protein) and caspase-8 associate with Fas in the absence of E/M, subsequent events such as caspase-8 activation and sensitivity to apoptosis are decreased. During the course of Fas stimulation, ezrin and moesin become phosphorylated, respectively, on T567 and on T558. This phosphorylation is mediated by the kinase ROCK (Rho-associated coiled coil-containing protein kinase) I subsequently to Rho activation. Indeed, inhibition of either Rho or ROCK prevents ezrin and moesin phosphorylation, abrogates the formation of Fas aggregates, and interferes with caspase-8 activation. Thus, phosphorylation of E/M by ROCK is involved in the early steps of apoptotic signaling following Fas triggering and regulates apoptosis induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号