首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.  相似文献   

2.
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand‐full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.  相似文献   

3.
4.
5.
以新疆杨叶柄为外植体,利用农杆菌法将棉花漆酶基因GaLAC1导入新疆杨.PCR,Soutllern杂交证明外源基因已经整合到杨树基因组中.漆酶活性分析表明转基因植株中漆酶活性较非转基因对照显著提高.与对照植株相比,转基因新疆杨茎段中总木质素的含量有不同程度的增加,最高达21.5%.木质素的组织化学染色进一步证实了GaLAC1的过量表达能够导致转基因植株中总木质素含量的增加.实验结果表明GaLAC1参与了植物体内木质素的合成,这是首次成功利用转基因植物证实植物漆酶基因参与木质素合成的报道.  相似文献   

6.
Several fungal laccases have been compared for the oxidation of a nonphenolic lignin dimer, 1-(3, 4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1,3-diol (I), and a phenolic lignin model compound, phenol red, in the presence of the redox mediators 1-hydroxybenzotriazole (1-HBT) or violuric acid. The oxidation rates of dimer I by the laccases were in the following order: Trametes villosa laccase (TvL) > Pycnoporus cinnabarinus laccase (PcL) > Botrytis cinerea laccase (BcL) > Myceliophthora thermophila laccase (MtL) in the presence of either 1-HBT or violuric acid. The order is the same if the laccases are used at the same molar concentration or added to the same activity (with ABTS [2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] as a substrate). During the oxidation of dimer I, both 1-HBT and violuric acid were to some extent consumed. Their consumption rates also follow the above order of laccases, i.e., TvL > PcL > BcL > MtL. Violuric acid allowed TvL and PcL to oxidize dimer I much faster than 1-HBT, while BcL and violuric acid oxidized dimer I more slowly than BcL and 1-HBT. The oxidation rate of dimer I is dependent upon both kcat and the stability of the laccase. Both 1-HBT and violuric acid inactivated the laccases, violuric acid to a greater extent than 1-HBT. The presence of dimer I or phenol red in the reaction mixture slowed down this inactivation. The inactivation is mainly due to the reaction of the redox mediator free radical with the laccases. We did not find any relationship between the carbohydrate content of the laccases and their inactivation. When the redox potential of the laccases is in the range of 750 to 800 mV, i.e., above that of the redox mediator, it does not affect kcat and the oxidation rate of dimer I.  相似文献   

7.
Lichens produce various oxidoreductases including heme-containing peroxidases and the copper-containing phenol oxidases tyrosinase and laccase. Our earlier findings suggested that significant oxidoreductase activity occurs mainly in lichens from the order Peltigerales. Here we show that the non-Peltigeralean lichen Usnea can display significant activities of peroxidases and laccases. Strong evidence for the involvement of peroxidases and laccases in saprotrophic activities comes from the observation that their activities are induced by “starvation” due to prolonged dark storage, and also by treatment with soluble cellulose and lignin breakdown products. We also show that, given a quinone and chelated Fe, Usnea can produce hydroxyl radicals; these radicals contribute to the break down of carbohydrates or lignin. However, hydroxyl radical production is independent of laccase and peroxidase activity. Laccases and peroxidases are involved in other aspects of lichen biology; here we show that peroxidases, but not laccases, can break down lichen substances. Reduction in the amounts of lichen substances will reduce photoprotection, which will increase the photosynthetic capacity of thalli during winter when light intensities are low.  相似文献   

8.
Plant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b‐resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397‐mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.  相似文献   

9.
Laccases are copper-containing glycoproteins, which are widespread in higher plants as multigene families. To gain more insight in the function of laccases in plants, especially potential role in lignification, we produced transgenic poplar plants overexpressing a cotton laccase cDNA (GaLAC1) under the control of the cauliflower mosaic virus 35S promoter. As compared with untransformed control plants, transgenic plants exhibited a 2.1- to 13.2-fold increased laccase activity, whereas plant growth rate and morphological characters remained similar to control plants. A 2.1–19.6% increase in total lignin content of the stem was found in transgenic plants. Moreover, transgenic plants showed a dramatically accelerated oxidation rate of phenolics, without obvious change in total phenolic content. Our data suggested that GaLAC1 may participate in lignin synthesis and phenolic metabolism in plants. The present work provided a new genetic evidence for the involvement of plant laccases in lignification.  相似文献   

10.
A method for purification of enzymes from the ligninolityc complex of the basidiomycete Trametes pubescens (Schumach.) Pilat has been elaborated. Two homogeneous isoforms of laccases (laccase 1 and laccase 2) as well as a homogeneous preparation of lignin peroxidase were isolated. Basic biochemical parameters of the enzymes were determined, such as the molecular weights (67, 67, and 45 kD, respectively), isoelectric points (5.3, 5.1, and 4.2, respectively), as well as content and composition of the carbohydrate moiety of the laccases (N-acetylglucosamine, mannose, and xylose). The pH dependences and thermal stabilities of the laccases were investigated. The kinetic parameters of the enzymatic reactions catalyzed by the laccases were determined using different substrates, such as catechol, hydroquinone, 2,2 -azinobis-(3-ethylbenzthiazoline-6-sulfonate), and K4Fe(CN)6. The structure of the active sites of both laccases and the lignin peroxidase were studied by EPR, CD, and UV-VIS spectroscopy, as well as using fluorescence analysis. Our studies showed similarity of the spectral characteristics of the two laccases, whereas their kinetic properties were found to be different.  相似文献   

11.
There has been increasing interest in extracellular enzymes from white rot fungi, such as lignin and manganese peroxidases, and laccases, due to their potential to degrade both highly toxic phenolic compounds and lignin. The optimum cultivation conditions for laccase production in semi-solid and liquid medium by Trametes versicolor, Trametes villosa, Lentinula edodes and Botrytis cinerea and the effects of laccase mediator system in E1 effluent were studied. The higher laccase activity (12756 U) was obtained in a liquid culture of T. versicolor in the presence of 1 mM of 2,5-xylidine and 0.4 mM copper salt as inducers. The effluent biotreatments were not efficient in decolorization with any fungal laccases studied. Maximum phenol reduction was approximately 23% in the absence of mediators from T. versicolor. The presence of 1-hydroxybenzotriazole did not increase phenol reduction. However, acetohydroxamic acid, which was not degraded by laccase, acted very efficiently on E1 effluent, reducing 70% and 73% of the total phenol and total organic carbon, respectively. Therefore, acetohydroxamic acid could be applied as a mediator for laccase bioremediation in E1 effluent.  相似文献   

12.
13.
14.
Laccases: A Useful Group of Oxidoreductive Enzymes   总被引:1,自引:0,他引:1  
Using enzymes as decontaminating agents has received great attention. One of the most promising groups of enzymes, laccases, are used to decontaminate phenol-polluted systems and for bio technological applications. Higher plants and fungi, mostly wood-rotting fungi, are the main producers of laccases, but bacterial laccases also have been found. Belonging to the class of phenoloxidases, laccases catalyze the polymerization of several phenolic substances to polymeric products. In addition, they have transformed lignin and lignin-related compounds, showing a very broad substrate specificity. Specific compounds acting as protein-synthesis inducers historically have been used to improve the production of the enzyme. Recent success in fungal molecular and cellular engineering technology has contributed to significantly increase the industrial production of recombinant laccase. Kinetic (Michaelis-Menten parameters, optimum pH, kcat) and stability properties of laccases may vary according to the source of the enzymes. Laccases are used in a variety of applications, such as to remove toxic compounds from aquatic and terrestrial systems, to produce and treat beverages, as analytical tools, and as biosensors to estimate the quantity of phenols in natural juices or the presence of other enzymes. Laccases have been used successfully in immobilized form as well as dissolved in organic solvents.  相似文献   

15.
A new physiological role for veratryl alcohol in fungi important in the biodegradation of the lignified plant cell wall is presented. Botryosphaeria sp., grown on starch, pectin, cellulose or xylan produced amylase, pectinase, cellulase, xylanase and laccase, whereas glucose and xylose repressed the synthesis of cellulase and xylanase, but not laccase. When cultured on each of these substrates in the presence of veratryl alcohol, laccase activity increased but the activities of amylase, pectinase, cellulase and xylanase significantly decreased. Basal medium containing softwood kraft lignin in the presence of veratryl alcohol induced laccases above constitutive levels. Ethyl alcohol also stimulated laccase production.  相似文献   

16.
Several fungal laccases have been compared for the oxidation of a nonphenolic lignin dimer, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1,3-diol (I), and a phenolic lignin model compound, phenol red, in the presence of the redox mediators 1-hydroxybenzotriazole (1-HBT) or violuric acid. The oxidation rates of dimer I by the laccases were in the following order: Trametes villosa laccase (TvL) > Pycnoporus cinnabarinus laccase (PcL) > Botrytis cinerea laccase (BcL) > Myceliophthora thermophila laccase (MtL) in the presence of either 1-HBT or violuric acid. The order is the same if the laccases are used at the same molar concentration or added to the same activity (with ABTS [2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)] as a substrate). During the oxidation of dimer I, both 1-HBT and violuric acid were to some extent consumed. Their consumption rates also follow the above order of laccases, i.e., TvL > PcL > BcL > MtL. Violuric acid allowed TvL and PcL to oxidize dimer I much faster than 1-HBT, while BcL and violuric acid oxidized dimer I more slowly than BcL and 1-HBT. The oxidation rate of dimer I is dependent upon both kcat and the stability of the laccase. Both 1-HBT and violuric acid inactivated the laccases, violuric acid to a greater extent than 1-HBT. The presence of dimer I or phenol red in the reaction mixture slowed down this inactivation. The inactivation is mainly due to the reaction of the redox mediator free radical with the laccases. We did not find any relationship between the carbohydrate content of the laccases and their inactivation. When the redox potential of the laccases is in the range of 750 to 800 mV, i.e., above that of the redox mediator, it does not affect kcat and the oxidation rate of dimer I.  相似文献   

17.
18.
Fungal laccases: versatile tools for lignocellulose transformation   总被引:2,自引:0,他引:2  
Conversion of lignocellulosic materials to useful, high value products normally requires a pre-treatment step to transform or deconstruct the recalcitrant and heterogeneous lignin fraction. The development of "green tools" for the transformation of lignocellulosic feedstocks is in high demand for a sustainable exploitation of such resources. This multi-faceted challenge is being addressed by an ever-increasing suite of ligninolytic enzymes isolated from various sources. Among these, fungal laccases are known to play an important role in lignin degradation/modification processes. The white-rot fungus Pleurotus ostreatus expresses multiple laccase genes encoding isoenzymes with different properties. The availability of established recombinant expression systems for P.?ostreatus laccase isoenzymes has allowed to further enrich the panel of P.?ostreatus laccases by the construction of mutated, "better performing" enzymes through molecular evolution techniques. New oxidative catalysts with improved activity and stability either at high temperature and at acidic and alkaline pH have been isolated and characterized.  相似文献   

19.
Laccases (EC 1.10.3.2) are multicopper oxidases able to oxidize various substrates, such as phenolic subunits of lignin. The substrate range can be widened to non-phenolic units by the use of mediators. Since discovery of the laccase-mediator system, direct reactions of lignin and laccase without mediated electron-transfer have gained much less attention. The objective of this study was to investigate lignin as a substrate for fungal laccases by using lignin model compounds. These model compounds contained guaiacylic and syringylic moieties and also compounds of guaiacylic origin at a higher oxidation level. Some of these compounds are commercially available, but most of them were synthesized. The oxidation reaction rates of the lignin model compounds were studied by monitoring consumption of the co-substrate oxygen, in reactions catalyzed by laccases from two different fungi; Melanocarpus albomyces and Trametes hirsuta, possessing different molecular and catalytic properties. These reaction rate studies were compared to physicochemical properties of the lignin model compounds: relative redox potentials determined using cyclic voltammetry and pKa-values. Docking of syringylic and biphenylic compounds to the active sites of both laccases was performed and the resulting model complex structures were used to further interpret the reaction rate results. Reaction rates of laccases are mainly affected by the ability of a lignin model compound to be oxidized and the pKa-value of the substrate seems to be less important. As a consequence, syringylic compounds are oxidized with the highest rates and compounds at a higher oxidation level and redox-potential, such as vanillin, are oxidized at a much lower rate. Both guaiacylic and syringylic type compounds fit well in the active sites of both laccases. Only for a biphenylic compound, steric clashes were observed, and they are likely to have an effect on the reaction rate. When the oxidation rates on the selected model compounds with the two different laccases were compared, the redox-potential difference between laccases T1 copper and the lignin model compound (ΔE) was not the only property that determined the oxidation rate. In the case of lignin model substrates, also the selectivity of a specific laccase, reflected in the kcat/Km value, plays an important role.  相似文献   

20.
从昆虫漆酶的种类、分布、序列信息、研究方法以及体内功能等方面对昆虫漆酶的研究现状进行综述,并提出昆虫漆酶有望应用于木质素降解和害虫防治等领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号