首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to their interactions with hetero-trimeric G proteins, seven-transmembrane domain receptors are now known to form multimeric complexes that can include receptor homo- or hetero-oligomers and/or accessory proteins that modulate their activity. The calcitonin gene-related peptide (CGRP) receptor requires the assembly of the seven-transmembrane domain calcitonin receptor-like receptor with the single-transmembrane domain receptor activity-modifying protein-1 to reach the cell surface and be active. However, the relative stoichiometric arrangement of these two proteins within a receptor complex remains unknown. Despite recent advances in the development of protein-protein interactions assays, determining the composition and stoichiometric arrangements of such signaling complexes in living cells remains a challenging task. In the present study, we combined bimolecular fluorescence complementation (BiFC) with bioluminescence resonance energy transfer (BRET) to probe the stoichiometric arrangement of the CGRP receptor complex. Together with BRET competition assays, co-immunoprecipitation experiments, and BiFC imaging, dual BRET/BiFC revealed that functional CGRP receptors result from the association of a homo-oligomer of the calcitonin receptor-like receptor with a monomer of the accessory protein receptor activity-modifying protein-1. In addition to revealing the existence of an unexpected asymmetric oligomeric organization for a G protein-coupled receptor, our study illustrates the usefulness of dual BRET/BiFC as a powerful tool for analyzing constitutive and dynamically regulated multiprotein complexes.  相似文献   

2.
Defining the subcellular distribution of signaling complexes is imperative to understanding the output from that complex.Conventional methods such as immunoprecipitation do not provide information on the spatial localization of complexes. In contrast, BiFC monitors the interaction and subcellular compartmentalization of protein complexes. In this method, a fluororescent protein is split into amino- and carboxy-terminal non-fluorescent fragments which are then fused to two proteins of interest. Interaction of the proteins results in reconstitution of the fluorophore (Figure 1)1,2. A limitation of BiFC is that once the fragmented fluorophore is reconstituted the complex is irreversible3. This limitation is advantageous in detecting transient or weak interactions, but precludes a kinetic analysis of complex dynamics. An additional caveat is that the reconstituted flourophore requires 30min to mature and fluoresce, again precluding the observation of real time interactions4. BiFC is a specific example of the protein fragment complementation assay (PCA) which employs reporter proteins such as green fluorescent protein variants (BiFC), dihydrofolate reductase, b-lactamase, and luciferase to measure protein:protein interactions5,6. Alternative methods to study protein:protein interactions in cells include fluorescence co-localization and Förster resonance energy transfer (FRET)7. For co-localization, two proteins are individually tagged either directly with a fluorophore or by indirect immunofluorescence. However, this approach leads to high background of non-interacting proteins making it difficult to interpret co-localization data. In addition, due to the limits of resolution of confocal microscopy, two proteins may appear co-localized without necessarily interacting. With BiFC, fluorescence is only observed when the two proteins of interest interact. FRET is another excellent method for studying protein:protein interactions, but can be technically challenging. FRET experiments require the donor and acceptor to be of similar brightness and stoichiometry in the cell. In addition, one must account for bleed through of the donor into the acceptor channel and vice versa. Unlike FRET, BiFC has little background fluorescence, little post processing of image data, does not require high overexpression, and can detect weak or transient interactions. Bioluminescence resonance energy transfer (BRET) is a method similar to FRET except the donor is an enzyme (e.g. luciferase) that catalyzes a substrate to become bioluminescent thereby exciting an acceptor. BRET lacks the technical problems of bleed through and high background fluorescence but lacks the ability to provide spatial information due to the lack of substrate localization to specific compartments8. Overall, BiFC is an excellent method for visualizing subcellular localization of protein complexes to gain insight into compartmentalized signaling.Download video file.(55M, mov)  相似文献   

3.
Heterotrimeric G proteins typically transduce signals from G protein-coupled receptors (GPCRs) to effector proteins. In the conventional G protein signaling paradigm, the G protein is located at the cytoplasmic surface of the plasma membrane, where, after activation by an agonist-bound GPCR, the GTP-bound Gα and free Gβγ bind to and regulate a number of well-studied effectors, including adenylyl cyclase, phospholipase Cβ, RhoGEFs and ion channels. However, research over the past decade or more has established that G proteins serve non-canonical roles in the cell, whereby they regulate novel effectors, undergo activation independently of a GPCR, and/or function at subcellular locations other than the plasma membrane. This review will highlight some of these non-canonical aspects of G protein signaling, focusing on direct interactions of G protein subunits with cytoskeletal and cell adhesion proteins, the role of G proteins in cell division, and G protein signaling at diverse organelles.  相似文献   

4.
Multiprotein complexes partake in nearly all cell functions, thus the characterization and visualization of protein-protein interactions in living cells constitute an important step in the study of a large array of cellular mechanisms. Recently, noninvasive fluorescence-based methods using resonance energy transfer (RET), namely bioluminescence-RET (BRET) and fluorescence-RET (FRET), and those centered on protein fragment complementation, such as bimolecular fluorescence complementation (BiFC), have been successfully used in the study of protein interactions. These new technologies are nowadays the most powerful approaches for visualizing the interactions occurring within protein complexes in living cells, thus enabling the investigation of protein behavior in their normal milieu. Here we address the individual strengths and weaknesses of these methods when applied to the study of protein-protein interactions.  相似文献   

5.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.  相似文献   

6.
The concept that GPCRs exist and potentially function as dimers and/or higher oligomers has progressed recently from hypothesis to being widely accepted. A range of techniques has contributed to this understanding, including co-immunoprecipitation and various forms of fluorescence and bioluminescence resonance energy transfer. Although co-immunoprecipitation studies indicate the capacity of a wide range of GPCRs to form hetero-dimers as well as homo-dimers, this approach is not well suited to examine selectivity of interactions. Both bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) have been applied to the detection of GPCR dimerisation in intact cells and BRET and FRET have been used to attempt to quantitate the fraction of GPCRs present as dimers. Following heterologous expression, a considerable fraction of many GPCRs is not fully processed and is trafficked to the proteasome or lysosome for destruction. A distinct limitation of both BRET and conventional FRET approaches is that both the energy donor and energy acceptor tags are inside the cell. Time-resolved FRET employing N-terminally epitope-tagged GPCRs has been used to allow detection only of dimers trafficked successfully to the cell surface. Reports indicating the appearance of distinct pharmacology and function following co-expression of two GPCRs are fascinating. Much remains to be examined, however, on the specificity and mechanisms of these interactions and to develop techniques to monitor the function only of hetero-dimers when the corresponding homo-dimers must also be present.  相似文献   

7.
β-Adrenergic receptors (βAR) and D(2)-like dopamine receptors (which include D(2)-, D(3)- and D(4)-dopamine receptors) activate G(s) and G(i), the stimulatory and inhibitory heterotrimeric G proteins, respectively, which in turn regulate the activity of adenylyl cyclase (AC). β(2)-Adrenergic receptors (β(2)AR) and D(4)-dopamine receptors (D(4)DR) co-immunoprecipitated when co-expressed in HEK 293 cells, suggesting the existence of a signaling complex containing both receptors. In order to determine if these receptors are closely associated with each other, and with other components involved in G protein-mediated signal transduction, β(2)AR, D(4)DR, G protein subunits (Gα(i1) and the Gβ(1)γ(2) heterodimer) and AC were tagged so that bioluminescence resonance energy transfer (BRET) could be used to monitor their interactions. All of the tagged proteins retained biological function. For the first time, FlAsH-labeled proteins were used in BRET experiments as fluorescent acceptors for the energy transferred from Renilla luciferase-tagged donor proteins. Our experiments revealed that β(2)AR, D(4)DR, G proteins and AC were closely associated in a functional signaling complex in cellulo. Furthermore, BRET experiments indicated that although activation of G(i) caused a conformational change within the heterotrimeric protein, it did not cause the Gβγ heterodimer to dissociate from the Gα(i1) subunit. Evidence for the presence of a signaling complex in vivo was obtained by purifying βAR from detergent extracts of mouse brain with alprenolol-Sepharose and showing that the precipitate also contained both D(2)-like dopamine receptors and AC.  相似文献   

8.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.Key words: bitopic membrane proteins, transmembrane domains, transmembrane signaling, helix-helix interactions, receptors  相似文献   

9.
Oligomerization of the G protein-coupled cholecystokinin (CCK) receptor has been demonstrated, but its molecular basis and functional importance are not clear. We now examine contributions of transmembrane (TM) segments to oligomerization of this receptor using a peptide competitive inhibition strategy. Oligomerization of CCK receptors tagged at the carboxyl terminus with Renilla luciferase or yellow fluorescent protein was quantified using bioluminescence resonance energy transfer (BRET). Synthetic peptides representing TM I, II, V, VI, and VII of the CCK receptor were utilized as competitors. Of these, only TM VI and VII peptides disrupted receptor BRET. Control studies established that the beta2-adrenergic receptor TM VI peptide that disrupts oligomerization of that receptor had no effect on CCK receptor BRET. Notably, disruption of CCK receptor oligomerization had no effect on agonist binding, biological activity, or receptor internalization. To gain insight into the face of TM VI contributing to oligomerization, we utilized analogous peptides with alanines in positions 315, 319, and 323 (interhelical face) or 317, 321, and 325 (external lipid-exposed face). The Ala317,321,325 peptide eliminated the disruptive effect on CCK receptor BRET, whereas the other mutant peptide behaved like wild-type TM VI. This suggests that the lipid-exposed face of the CCK receptor TM VI most contributes to oligomerization and supports external contact dimerization of helical bundles, rather than domain-swapped dimerization. Fluorescent CCK receptor mutants with residues 317, 321, and 325 replaced with alanines were also prepared and failed to yield significant resonance transfer signals using either BRET or a morphological FRET assay, further supporting this interpretation.  相似文献   

10.
Kim J  Lee J  Kwon D  Lee H  Grailhe R 《Molecular bioSystems》2011,7(11):2991-2996
Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) are extensively used to analyze protein interactions occurring in living cells. Although these two techniques are broadly applied in cellular biology, comparative analysis of their strengths and limitations is lacking. To this end, we analyzed a small network of proteins involved in the amyloidogenic processing of the Alzheimer β-amyloid precursor using FRET based cytometry, BRET, and fluorescence lifetime imaging microscopy (FLIM). Using all three methods, we were able to detect the interactions of the amyloid precursor protein with APBB1, APBB2, and APP itself. And we found an unreported interacting pair, APP-APH1A. In addition, we show that these four interacting pairs exhibit a strong FRET correlation with the acceptor/donor expression ratios. Overall the FRET based cytometry was the most sensitive and reliable approach to screen for new interacting proteins. Therefore, we applied FRET based cytometry to study competitive binding of two proteins, APBB1 and APBB2, with the same APP target.  相似文献   

11.
Dopamine receptor signaling   总被引:13,自引:0,他引:13  
  相似文献   

12.
The heterotrimeric G‐protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G‐protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G‐protein associates with heptahelical G‐protein‐coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G‐protein effectors and scaffold proteins, we screened a set of proteins from the G‐protein complex using two‐hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G‐protein interactome. Within this core, over half of the interactions comprising two‐thirds of the nodes were retested and validated as genuine in planta. Co‐expression analysis in combination with phenotyping of loss‐of‐function mutations in a set of core interactome genes revealed a novel role for G‐proteins in regulating cell wall modification.  相似文献   

13.
Plasma membrane heterotrimeric G proteins transduce extracellular signal from seven transmembrane receptors to downstream effectors. In addition, G proteins and their regulators localize at multiple intracellular sites and play crucial roles in cell division. In model organisms such as Caenorhabditis elegans and Drosophila receptor-independent heterotrimeric G protein function is vital for the orientation of mitotic spindle, generation of microtubule pulling force, aster-induced cytokinesis, and centration of the nucleus-centrosome complex. This new paradigm is now being extended to mammalian cells. Mammalian G protein signaling components localize in centrosomes and at the midbody, and altered function or expression of these proteins can cause cell division defects. Here, we highlight the role and possible mechanisms of G protein signaling in mammalian cell division in conjunction with recent findings in model organisms. Together the evidence argues for a more direct role of non-canonical heterotrimeric G protein signaling in microtubule- and actin cytoskeleton-mediated cellular processes.  相似文献   

14.
Lisenbee CS  Miller LJ 《Biochemistry》2006,45(27):8216-8226
Oligomerization of numerous G protein-coupled receptors has been documented, including the prototypic family B secretin receptor. The clinical significance of oligomerization of this receptor became clear with the recent observation that a misspliced form present in pancreatic cancer could associate with the wild-type receptor and act as a dominant negative inhibitor of its normal growth inhibitory function. Our goal was to explore the molecular mechanism of this interaction using bioluminescence (BRET) and fluorescence (FRET) resonance energy transfer and fluorescence microscopy with a variety of receptor constructs tagged with luciferase or cyan or yellow fluorescent proteins. BRET signals comparable to those obtained from cells coexpressing differentially tagged wild-type receptors were observed for similarly tagged secretin receptors in which all or part of the amino-terminal domain was deleted. As expected, neither of these constructs bound secretin, and only the partially truncated construct sorted to the plasma membrane. Receptors lacking the majority of the carboxyl-terminal domain, including that important for phosphorylation-mediated desensitization, also produced BRET signals above background. These findings suggested that the receptor's membrane-spanning core is responsible for secretin receptor oligomerization. Interestingly, alanine substitutions for a -GxxxG- helix interaction motif in transmembrane segment 7 created nonfunctional receptors that were capable of forming oligomers. Furthermore, treatment of receptor-expressing cells with brefeldin A did not eliminate the BRET signals, and morphologic FRET experiments confirmed the expected subcellular localizations of receptor oligomers. We conclude that secretin receptor oligomerization occurs through -GxxxG- motif-independent interactions of transmembrane segments during the maturation of nascent molecules.  相似文献   

15.

Background

Signaling messengers and effector proteins provide an orchestrated molecular machinery to relay extracellular signals to the inside of cells and thereby facilitate distinct cellular behaviors. Formations of intracellular macromolecular complexes and segregation of signaling cascades dynamically regulate the flow of a biological process.

Scope of review

In this review, we provide an overview of the development and application of FRET technology in monitoring cyclic nucleotide-dependent signalings and protein complexes associated with these signalings in real time and space with brief mention of other important signaling messengers and effector proteins involved in compartmentalized signaling.

Major conclusions

The preciseness, rapidity and specificity of cellular responses indicate restricted alterations of signaling messengers, particularly in subcellular compartments rather than globally. Not only the physical confinement and selective depletion, but also the intra- and inter-molecular interactions of signaling effectors modulate the direction of signal transduction in a compartmentalized fashion. To understand the finer details of various intracellular signaling cascades and crosstalk between proteins and other effectors, it is important to visualize these processes in live cells. Förster Resonance Energy Transfer (FRET) has been established as a useful tool to do this, even with its inherent limitations.

General significance

FRET technology remains as an effective tool for unraveling the complex organization and distribution of various endogenous signaling proteins, as well as the spatiotemporal dynamics of second messengers inside a single cell to distinguish the heterogeneity of cell signaling under normal physiological conditions and during pathological events.  相似文献   

16.
Active G protein-coupled receptors activate heterotrimeric Gαβγ proteins by catalyzing the exchange of GDP by GTP at the Gα subunit. A paradoxical attenuation of G protein-activated inwardly rectifying potassium channels (GIRK) upon stimulation of native cells with high concentrations of agonist is known. However, a deactivation of activated G proteins by active receptors has not been experimentally studied in intact cells. We monitored GIRK currents and Go protein activation by means of fluorescence resonance energy transfer (FRET) in parallel. The results suggested that GIRK currents were paradoxically attenuated due to an inactivation of Go proteins by active α2A-adrenergic receptors. To study the mechanisms, G protein activation and receptor-G protein interactions were analyzed as a function of nucleotide type and nucleotide concentrations by means of FRET, while controlling intracellular nucleotides upon permeabilization of the cell membrane. Results suggested a receptor-catalyzed dissociation of GTP from activated heterotrimeric Gαβγ. Consequently, nucleotide-free G proteins were sequestrated in heterotrimeric conformation at the active receptor, thus attenuating downstream signaling in an agonist-dependent manner.  相似文献   

17.
Shyu YJ  Suarez CD  Hu CD 《Nature protocols》2008,3(11):1693-1702
Studies of protein interactions have increased our understanding and knowledge of biological processes. Assays that utilize fluorescent proteins, such as fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), have enabled direct visualization of protein interactions in living cells. However, these assays are primarily suitable for a pair of interacting proteins, and methods to visualize and identify multiple protein complexes in vivo are very limited. This protocol describes the recently developed BiFC-FRET assay, which allows visualization of ternary complexes in living cells. We discuss how to design the BiFC-FRET assay on the basis of the validation of BiFC and FRET assays and how to perform transfection experiments for acquisition of fluorescent images for net FRET calculation. We also provide three methods for normalization of the FRET efficiency. The assay employs a two-chromophore and three-filter FRET setup and is applicable to epifluorescence microscopes. The entire protocol takes about 2-3 weeks to complete.  相似文献   

18.
Summary Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). When addressing key questions concerning the regulation of GPCR-protein complexes and their functional significance, the development and refinement of non-invasive techniques to study these interactions will be of great value. One such technique, bioluminescence resonance energy transfer (BRET), is a recently described biophysical method that represents a powerful tool with which to measure protein-protein interactions in live cells, in real time. This minireview highlights the impact that evolving techniques such as BRET have had on the study of dynamic protein interactions involving GPCRs. In particular, the application of BRET to the study of protein interactions involving the receptors for hypothalamic peptide hormones, thyrotropin-releasing hormone (TRH) and gonadotropin-releasing hormone (GnRH), will be discussed. Using these receptors, BRET has successfully been used to demonstrate formation of both agonist-dependent and independent GPCR-GPCR complexes (oligomerization) and the agonist-dependent interaction of GPCRs with their intracellular adaptor protein partners, the arrestins. In summary, BRET is a highly snnsitive method that will not only aid in advancing our understanding of GPCR signalling and trafficking bout coud also potentially lead to the development of novel therapeutics that target these GPCR-protein complexes.  相似文献   

19.
A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100 Å of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.  相似文献   

20.
Triggered by agonist binding to cell surface receptors, the heterotrimeric G proteins dissociate into and βγ subunits, each activating distinct second messenger pathways. Peptides from the primary sequences of receptors, G proteins, and effectors have been used to study the molecular interactions between these proteins. Receptor-derived peptides from the second, third and fourth intracellular loops and certain naturally occurring peptides antagonize G protein interactions and can directly activate G protein. These peptides bind to G protein sites that include the N and C terminal regions of the subunit and a yet to be identified region of the β subunit. Peptides have also been useful in characterizing G protein-effector interactions. The identification of the contact sites between proteins involved in G protein signal transduction should aid in the development of non-peptide mimetic therapeutics which could specifically modify G protein-mediated cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号