首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Three different 3 noncoding sequences of wheat rubisco small subunit (SSU) genes (RbcS) were used as probes to identify the gene members of different RbcS subfamilies in the common wheat cultivar Chinese Spring (CS). All genes of the wheat RbcS multigene family were previously assigned to the long arm of homoeologous group 5 and to the short arm of homoeologous group 2 chromosomes of cv CS. Extracted DNA from various aneuploids of these homoeologous groups was digested with four restriction enzymes and hybridized with three different 3 noncoding sequences of wheat SSU clones. All RbcS genes located on the long arm of homoeologous group 5 chromosomes were found to comprise a single subfamily, while those located on the short arm of group 2 comprised three subfamilies. Each of the ancestral diploid genomes A, B, and D has at least one representative gene in each subfamily, suggesting that the divergence into subfamilies preceded the differentiation into species. This divergence of the RbcS genes, which is presumably accompanied by a similar divergence in the 5 region, may lead to differential expression of various subfamilies in different tissues and in different developmental stages, in response to different environmental conditions. Moreover, members of one subfamily that belong to different genomes may have diverged also in the coding sequence and, consequently, code for distinguishable SSU. It is assumed that such utilization of the RbcS multigene family increases the adaptability and phenotypic plasticity of common wheat over its diploid progenitors.  相似文献   

2.
The RbcS multigene family of hexaploid (bread) wheat, Triticum aestivum (genome BBAADD), which encodes the small subunit of Rubisco, comprises at least 22 genes. Based on their 3′ non-coding sequences, these genes have been classified into four subfamilies (SFs), of which three (SF-2, SF-3 and SF-4) are located on chromosomes of homoeologous group 2 and one (SF-1) on homoeologous group 5. In the present study we hybridized three RbcS subfamily-specific probes (for SF-1, SF-2 and SF-3) to total DNA digested with four restriction enzymes and analyzed the RFLP patterns of these subfamilies in eight diploid species of Aegilops and Triticum, and in two tetraploid and one hexaploid species of wheat (the diploid species are the putative progenitors of the polyploid wheats). The three subfamilies varied in their level of polymorphism, with SF-2 being the most polymorphic in all species. In the diploids, the order of polymorphism was SF-2 > SF-3 > SF-1, and in the polyploids SF-2 > SF-1 > SF-3. The RbcS genes of the conserved SF-1 were previously reported to have the highest expression levels in all the wheat tissues studied, indicating a negative correlation between polymorphism and gene expression. Among the diploids, the species with the D and the S genomes were the most polymorphic and the A-genome species were the least polymorphic. The polyploids were less polymorphic than the diploids. Within the polyploids, the A genome was somewhat more polymorphic than the B genome, while the D genome was the most conserved. Among the diploid species with the A genome, the RFLP pattern of T. urartu was closer to that of the A genome of the common wheat cultivar Chinese Spring (CS) than to that of T. monococcum. The pattern in Ae. tauschii was similar to that of the D genome of CS. Only partial resemblance was found between the RFLP patterns of the species with the S genome and the B genome of CS. Received: 10 February 2000 / Accepted: 21 February 2000  相似文献   

3.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

4.
The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to related large-genome species has revolutionized molecular genetics and breeding strategies for improving those crops. Comparative sequence analysis methods can be used to cross-reference genes between species maps, enhance the resolution of comparative maps, study patterns of gene evolution, identify conserved regions of the genomes, and facilitate interspecies gene cloning. In this study, 5,780 Triticeae ESTs that have been physically mapped using wheat (Triticum aestivum L.) deletion lines and segregating populations were compared using NCBI BLASTN to the first draft of the public rice (Oryza sativa L.) genome sequence data from 3,280 ordered BAC/PAC clones. A rice genome view of the homoeologous wheat genome locations based on sequence analysis shows general similarity to the previously published comparative maps based on Southern analysis of RFLP. For most rice chromosomes there is a preponderance of wheat genes from one or two wheat chromosomes. The physical locations of non-conserved regions were not consistent across rice chromosomes. Some wheat ESTs with multiple wheat genome locations are associated with the non-conserved regions of similarity between rice and wheat. The inverse view, showing the relationship between the wheat deletion map and rice genomic sequence, revealed the breakdown of gene content and order at the resolution conferred by the physical chromosome deletions in the wheat genome. An average of 35% of the putative single copy genes that were mapped to the most conserved bins matched rice chromosomes other than the one that was most similar. This suggests that there has been an abundance of rearrangements, insertions, deletions, and duplications eroding the wheat-rice genome relationship that may complicate the use of rice as a model for cross-species transfer of information in non-conserved regions.  相似文献   

5.
Homoeologous group 1 chromosomes of wheat contain important genes that confer resistance to leaf, stem and stripe rusts, powdery mildew and Russian wheat aphid. A disease resistance gene analog encoding nucleotide binding site-leucine rich repeat (NBS-LRR), designated RgaYr10, was previously identified at the stripe rust resistant locus, Yr10, located on chromosome 1BS distal to the storage protein, Gli-B1 locus. RgaYr10 identified gene members in the homoeologous region of chromosome 1DS cosegregating with the leaf rust resistance gene, Lr21, which originally was transferred from a diploid D genome progenitor. Four RgaYr10 gene members were isolated from chromosome 1DS and compared to two gene members previously isolated from the chromosome 1BS homeologue. NBS-LRR genes tightly linked to stripe rust resistance gene Yr10 on chromosome 1BS were closely related in sequence and structure to NBS-LRR genes tightly linked to leaf rust resistance gene Lr21 located within the homoeologous region on chromosome 1DS. The level of sequence homology was similar between NBS-LRR genes that were isolated from different genomes as compared to genes from the same genome. Electronic Publication  相似文献   

6.
A study of homoeologous recombination along almost the complete genetic length of two homoeologous chromosomes in the Triticeae was conducted. Sears' phlb mutant was used to induce homoeologous pairing between chromosomes 7A of common wheat and 7Ai–l of Agropyron intermedium. 390 ph1b ph1b homozygous F3 progeny were screened using six co-dominant DNA markers (RFLP loci). 63 of the progeny (16%) were putative recombinants, showing dissociation of RFLP markers within the arm(s). Progeny tests of self-fertile putative recombinants confirmed the dissociation phenotypes observed in the F3 progeny. No recombination could be confirmed in 117 F3 progeny plants having the Ph1– allele (control population). Frequencies and distribution of chiasmata along the chromosome arm 7AS were analysed using additional RFLP markers. The patterns of recombination between the two homoeologous chromosomes were found similar to those reported for homologous recombination between the same markers on short arms of group 7 chromosomes of Triticeae.  相似文献   

7.
选用来自小麦族7个部分同源群的26个DNA探针对45个小麦-鹅观草衍生后代株系及鹅观草、中国春和扬麦5号亲本进行RFLP分析,结果表明16个小麦-鹅观草异附加系、异代换系或可能的易位系中所涉及鹅观草染色体分别属于第1、3、5、6、7部分同源群。小麦-鹅观草异染色体系中导入的成对鹅观草染色体能够较稳定地遗传给后代。K139、K141、K214、K218、K219、K224二体附加系所添加的鹅观草染色体属第1部分同源群,但K214和K218所添加的鹅观草染色体与K219、K224的添加的鹅观草染色体分别来自鹅观草不同的染色体组。K147端体添加系涉及鹅观草第1部分同源群染色体长臂,而K139、K141和K147所涉及的鹅观草染色体长臂分别来自鹅观草3个不同的染色体组。鹅观草U染色体与小麦第1部分同源群有同源关系,属第1部分同源群的鹅观草染色体尤其是其长臂与赤霉病抗性有关。鹅观草第1部分同源群与第6部分同源群染色体之间可能涉及重排。K203添加的2条鹅观草染色体分别与第1和6部分同源群同源。K166导入鹅观草染色体涉及第5部分同源群短臂。K177(2n=41,20Ⅱ I)中,所渗入的鹅观草染色质涉及第5(5L)、6(6S)、7(SL)部分同源群。鹅观草S、H和Y3个染色体组间具部分同源性。  相似文献   

8.
Wheat flowering is controlled by numerous genes, which respond to environmental signals such as photoperiod and vernalization. Earliness per se (Eps) genes control flowering time independently of these environmental cues and are responsible for the fine tuning of flowering time. We recently mapped the Eps-A m 1 gene on the end of Triticum monococcum chromosome arm 1AmL. As a part of our efforts to clone Eps-A m 1 we developed PCR markers flanking this gene within a 2.7 cM interval. We screened more than one thousand gametes with these markers and identified 27 lines with recombination between them. Recombinant lines were used to generate a high-density map and to investigate the microcolinearity between wheat and rice in this region. We mapped ten genes from a 149 kb region located at the distal part of rice chromosome 5 (cdo393 – Ndk3) on a 3.7 cM region on wheat chromosome one. This region is part of an ancient duplication between rice chromosomes 5 and 1. Genes present in both rice chromosomes were less similar to each other than to the closest wheat orthologues, suggesting that this duplication preceded the divergence between wheat and rice. This hypothesis was supported by the presence of 18 loci duplicated both in rice chromosomes 5 and 1 and in the colinear wheat chromosomes from homoeologous groups 1 and 3. Independent gene deletions in wheat and rice lineages explain the alternations of colinearity between rice chromosome 5 and wheat chromosomes 1 and 3. Colinearity between the end of rice chromosome 5 and wheat chromosome 1 was also interrupted by a small inversion, and several non-colinear genes. These results suggest that the distal region of the long arm of wheat chromosome 1 was involved in numerous changes that differentiated wheat and rice genomes. This comparative study provided sufficient markers to saturate the Eps-A m 1 gene region and to precisely map this gene within a 0.9 cM interval flanked by the VatpC and Smp loci. Sequences obtained in this study: DQ196178, DQ196179, DQ196180, DQ196181, DQ196182, DQ196183, DQ196184, DQ196185, DQ196186, DQ196187, DQ196488, DQ198537, DQ308530, DQ308531, DQ308532, DQ308533, DQ308534, DQ308535, DQ308536, DQ308537, DQ308538, DQ308539, DQ308540  相似文献   

9.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

10.
In order to estimate synteny between At and A polyploid wheat genomes belonging to different evolutionary lines (Timopheevi and Emmer), saturation of chromosome maps of Triticum timopheevii At genome by molecular markers has been conducted. Totally, 179 EST-SSR and 48 genomic SSR-markers have been used with the following integration of 13 and 7 markers correspondingly into chromosome maps of At genome. ESTSSR showed higher transferability and lower polymorphism than genomic SSR markers. The chromosome maps designed were compared to maps of homoeologous chromosome group of the T. aestivum A genome. No disturbances of colinearity, i.e., of the order of markers within the chromosome segments on which they had been previously mapped, were observed. According to the quantity assessment of markers amplifying in homoeologous chromosomes, the maximum divergence was detected in two groups (4At/4A and 3At/3A) among the seven chromosomes examined in the A t and A genomes. Comparison of molecular genetic mapping results with the published results of studying meiosis of F1 hybrids and the frequency of chromosomes substitution in introgressive T. aestivum × T. timopheevii lines suggest that individual chromosomes of the At and A genomes evolve differently. Translocations were shown to introduce the major impact on the divergence of 4At/4A and 6At/6A chromosomes, while mutations of the primary DNA structure, on the divergence of homoeologous group 3 chromosomes. The level of reorganization of other chromosomes during the evolution in the At and A genomes was significantly lower.  相似文献   

11.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   

12.
A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ (‘CS’). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homoeologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homoeologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.  相似文献   

13.
 Low-temperature (LT) induced genes of the Wcs120 family in wheat (Triticum aestivum) were mapped to specific chromosome arms using Western and Southern blot analysis on the ditelocentric series in the cultivar Chinese Spring (CS). Identified genes were located on the long arms of the homoeologous group 6 chromosomes of all 3 genomes (A, B, and D) of hexaploid wheat. Related species carrying either the A, D, or AB genomes were also examined using Southern and Western analysis with the Wcs120 probe and the WCS120 antibody. All closely related species carrying one or more of the genomes of hexaploid wheat produced a 50 kDa protein that was identified by the antibody, and a Wcs120 homoeologue was detected by Southern analysis in all species. In the absence of chromosome arm 6DL in hexaploid CS wheat no 50 kDa protein was produced and the high-intensity Wcs120 band was missing, indicating 6DL as the location of Wcs120 but suggesting silencing of the Wcs120 homoeologue in the A genome. Levels of proteins that cross-reacted with the Wcs120 antibody and degrees of cold tolerance were also investigated in the Chinese Spring/Cheyenne (CS/CNN) chromosome substitution series. CNN chromosome 5A increased the cold tolerance of CS wheat. Densitometry scanning of Western blots to determine protein levels showed that the group 5 chromosome 5A had a regulatory effect on the expression of the Wcs120 gene family located on the group 6 chromosomes of all three hexaploid wheat genomes. Received: 10 July 1996 / Accepted: 30 September 1996  相似文献   

14.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

15.
The facultatively halophytic Lophopyrum elongatum, closely related wheat, Triticum aestivum, and their amphiploid tolerate salt stress better if they are gradually exposed to it than if they are suddenly stressed. Lophopyrum elongatum has greater tolerance of both forms of salt stress than wheat, and its genome partially confers this tolerance on their amphiploid. Chromosomal control of the tolerance of both stress regimes in the L. elongatum and wheat genomes was investigated with disomic and ditelosomic addition lines and disomic substitution lines of L. elongatum chromosomes in wheat and with wheat tetrasomics. The tolerance of the sudden salt stress is principally controlled by L. elongatum chromosomes 3E and 5E and less by 1E, 2E, 6E, and 7E and the tolerance of gradually imposed salt stress principally by chromosomes 3E, 4E, and 5E, and less by chromosome 1E and 7E. Ditelosomic analysis indicated that genes conferring the tolerance of sudden stress are on chromosome arms 1EL, 5ES, 5EL, 6EL, 7ES and 7EL and those controlling the gradual stress regime are on 1ES, 1EL, 5ES, 5EL, 6ES, 7ES, and 7EL. In wheat, chromosomes in homoeologous groups 1, 3, and 7 and chromosomes in homoeologous groups 1, 4, and 6 were shown to enhance the tolerance of suddenly and gradually imposed stress, respectively. The arms of chromosome 3E individually conferred tolerance to neither stress regime. Chromosome 2E and wheat chromosomes 2B and 2D reduce the tolerance of both stress regimes in a hyperploid state. In 2E this effect was associated with arm 2EL. A potential relationship between the tolerance of these stress regimes and the expression of the early-salt induced genes is examined.  相似文献   

16.
17.
Bread wheat is an allohexaploid with genome composition AABBDD. Phytochrome C is a gene involved in photomorphogenesis that has been used extensively for phylogenetic analyses. In wheat, the PhyC genes are single copy in each of the three homoeologous genomes and map to orthologous positions on the long arms of the group 5 chromosomes. Comparative sequence analysis of the three homoeologous copies of the wheat PhyC gene and of some 5 kb of upstream region has demonstrated a high level of conservation of PhyC, but frequent interruption of the upstream regions by the insertion of retroelements and other repeats. One of the repeats in the region under investigation appeared to have inserted before the divergence of the diploid wheat genomes, but was degraded to the extent that similarity between the A and D copies could only be observed at the amino acid level. Evidence was found for the differential presence of a foldback element and a miniature inverted-repeat transposable element (MITE) 5′ to PhyC in different wheat cultivars. The latter may represent the first example of an active MITE family in the wheat genome. Several conserved non-coding sequences were also identified that may represent functional regulatory elements. The level of sequence divergence (Ks) between the three wheat PhyC homoeologs suggests that the divergence of the diploid wheat ancestors occurred some 6.9 Mya, which is considerably earlier than the previously estimated 2.5–4.5 Mya. Ka/Ks ratios were <0.15 indicating that all three homoeologs are under purifying selection and presumably represent functional PhyC genes. RT-PCR confirmed expression of the A, B and D copies. The discrepancy in evolutionary age of the wheat genomes estimated using sequences from different parts of the genome may reflect a mosaic origin of some of the Triticeae genomes.  相似文献   

18.
Presence of genes in gene-rich regions on wheat chromosomes has been widely reported. However, there is a lack of information on the precise characterization of these regions with respect to the distribution of genes and recombination. We attempted to critically analyze the available data to characterize gene-rich regions and to study the distribution of genes and recombination on wheat homoeologous group 6 chromosomes which are a reservoir of several useful genes controlling traits of economic importance. Consensus physical and genetic linkage maps were constructed for homoeologous group 6 using physical and genetic mapping data. Five major gene-rich regions were identified on homoeologous group 6 chromosomes, with two on the short and three on long arm. More than 90% of marker or gene loci were present in these five gene-rich regions, which comprise about 30% of the total physical chromosomal length. The gene-rich regions were mainly present in the distal 60% regions of the chromosomes. About 61% of the total loci map in the most distal regions which span only about 4% of the physical length of the chromosome. A range of sub-microscopic regions within each gene-rich region were also identified. Comparisons of the consensus physical and genetic linkage maps revealed that recombination occurred mainly in the gene-rich regions. Seventy percent of the total recombination occurred in the two most distally located regions that span only 4% of the physical length of the chromosomes. The relationship of recombination to the gene-rich region is not linear with distance from the centromere, especially on the long arm. The kb/cM estimates for group 6 chromosomes ranged from 146 kb in the gene-rich to about 10 Mb in the gene-poor region. The information obtained here is vital in understanding wheat genome structure and organization, which may lead in developing better strategies for positional cloning in wheat and related cereals.This revised version was pubished online in April 2005 with corrections to the page numbering.  相似文献   

19.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号