首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. An examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. The thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; during exposure to electric field 24 hr before u.v. irradiation; 24 hr after u.v. irradiation; and up to 48 hr continuously after u.v. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

2.
3.
The ability of ICR 2A frog cells to repair DNA damage induced by ultraviolet irradiation was examined. These cells are capable of photoreactivation but are nearly totally deficient in excision repair. They have the ability to convert the small molecule weight DNA made after irradiation into large molecules but do not show an enhancement in this process when the UV dose is delivered in two separate exposures separated by a 3- or 24-h incubation. Total DNA synthesis is depressed and low molecular weight DNA continues to be synthesized during pulse-labeling as long as 48 h after irradiation. The effects of pyrimidine dimer removal through exposure of UV irradiated cells to photoreactivating light indicate that dimers act as the critical lesions blocking DNA synthesis.  相似文献   

4.
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.  相似文献   

5.
We compared dimer excision in viable and nonviable cells fractions separated from Escherichia coli B/r cultures exposed to ultraviolet (UV) irradiation. For cells grown on minimal medium with glycerol as a carbon source, both fractions from the irradiated (20 J/m2, 5% survival) culture excised 60 to 70% of the thymine dimers from prelabeled DNA within 120 min. This percentage was, within experimental error, the same as that obtained from unseparated cultures. When isolated viable and nonviable populations were given a second UV exposure (20 J/m2) both types of cells were again able to excise dimers. The UV survival curve for the isolated viable population indicates that these cells are no more sensitive to radiation than exponentially growing cells not previously exposed to UV. The extent of dimer excision after UV irradiation was also the same in viable and nonviable cells separated from cultures grown on a glucose minimal medium in which both populations excised about 85% of the dimers within 120 min. These results show that the extent of removal of pyrimidine dimer from deoxyribonucleic acid is not precisely correlated with survival of repair-competent bacterial cells after exposure to UV light.  相似文献   

6.
Clonogenic survival was measured in plateau-phase cultures of the 10T1/2 mouse cell line exposed to 254 nm ultra-violet light. The survival curve was found to be biphasic, Do for the two components being 37 and 1191 erg/mm2 respectively. This extreme resistance at higher doses can only be partly accounted for by the increased cytoplasmic absorption of U.V.L. due to an increased thickness of plateau-phase cells. When the cultures were held for 24 hours in plateau phase in conditioned medium after irradiation, recovery yielding a 1.4-fold enhancement of survival was found at higher doses. This recovery process was inhibited by neither caffeine nor cycloheximide. When caffeine was given for 48 hours after sub-culture, the effect on survival was also negligible. We propose that this plateau-phase recovery process is associated with excision repair of DNA adducts induced by U.V.L. Delayed sub-culturing favours the excision mode of repair and renders the post-replication mode less necessary.  相似文献   

7.
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.  相似文献   

8.
We have investigated the kinetics of the loss of thymine dimers from the acid-insoluble fraction of several ultraviolet (UV)-irradiated cultured human cell lines. Our results show that UV fluences between 10 and 40 J/m2 produce an average of 21-85 x 10(5) thymine dimers per cell and an eventual maximal loss per cell of 12-20 x 10(5) thymine dimers. The time for half-maximal loss of dimers ranged from 12-22 h after UV irradiation. In contrast, the time for half-maximal repair synthesis of DNA measured by autoradiography was 4.5 h. This figure agrees well with reported half-maximal repair synthesis times, which range from 0.5 to 3.6 h based on our analysis. The discrepancy in the kinetics of the loss of thymine dimers from DNA and repair synthesis is discussed in terms of possible molecular mechanisms of thymine dimer excision in vivo and in terms of possible experimental artifacts.  相似文献   

9.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions.  相似文献   

10.
An aqueous extract of Kefir, fermented milk originally produced in the Caucasus mountains, suppressed morphological changes of human melanoma HMV-1 and SK-MEL cells and human normal fibroblastTIG-1 cells caused by UVC-irradiation, suggesting that UV damage can be suppressed by the Kefir extract. The addition of the Kefir extract after UVC-irradiation of HVM-1 cells resulted in a remarkable decrease in intracellular reactive oxygen species (ROS) which had been increased by UVC irradiation. The Kefir extract also stimulated unscheduled DNA synthesis and suppressed UVC-induced apoptosis of HMV-1 cells. A colony formation assay revealed that the Kefir extract rescued HMV-1 cells from cell death caused by UVC irradiation. The Kefir extract, as well as methyl methanethiosulfonate which is known to enhance the nucleotide excision repair (NER) activity, exhibited strong thymine dimer repair-enhancing activity. Epigalocatechin exhibited a weak NER activity but vitamins A, C, and E and catechin showed no NER activity. The thymine dimer repair-enhancing factors in the Kefir extract were heat-stable and assumed to be molecules with a molecular weight of less than 5000. The treatment of HMV-1 cells with the Kefir extract during or before UVC- irradiation also prevented the generation of ROS and thymine dimmer, and suppressed the apoptosis of HMV-1 cells, suggesting that application of Kefir can prevent UV damage.  相似文献   

11.
The specific reaction of potassium permanganate with thymine in single-stranded DNA was employed to analyze thymine [2+2] dimer repair in DNA and in DNA/peptide nucleic acid hybrid duplexes. This simple and highly sensitive chemical assay is convenient for monitoring repair of thymine dimers in oligonucleotides.  相似文献   

12.
An aqueous extract of Kefir, fermented milk originally produced in the Caucasus mountains, suppressed morphological changes of human melanoma HMV-1 and SK-MEL cells and human normal fibroblastTIG-1 cells caused by UVC-irradiation, suggesting that UV damage can be suppressed by the Kefir extract. The addition of the Kefir extract after UVC-irradiation of HVM-1 cells resulted in a remarkable decrease in intracellular reactive oxygen species (ROS) which had been increased by UVC irradiation. The Kefir extract also stimulated unscheduled DNA synthesis and suppressed UVC-induced apoptosis of HMV-1 cells. A colony formation assay revealed that the Kefir extract rescued HMV-1 cells from cell death caused by UVC irradiation. The Kefir extract, as well as methyl methanethiosulfonate which is known to enhance the nucleotide excision repair (NER) activity, exhibited strong thymine dimer repair-enhancing activity. Epigalocatechin exhibited a weak NER activity but vitamins A, C, and E and catechin showed no NER activity. The thymine dimer repair-enhancing factors in the Kefir extract were heat-stable and assumed to be molecules with a molecular weight of less than 5000. The treatment of HMV-1 cells with the Kefir extract during or before UVC- irradiation also prevented the generation of ROS and thymine dimmer, and suppressed the apoptosis of HMV-1 cells, suggesting that application of Kefir can prevent UV damage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
DNA repair is a critical process in protecting cellular genetic information from mutation. Nucleotide excision repair (NER) is a mechanism by which cells correct DNA damage caused by agents that form bulky covalent adducts and UV photoproducts such as thymine dimers and 6-4 photoproduct. NER, sometimes called dark repair, is generally accepted as being low in fish compared to mammals. This study was designed to quantitate NER in two related catfish species that have known differential sensitivities to liver carcinomas. The original hypothesis was that the more cancer resistant species, channel catfish (Ictalurus punctatus), would have more efficient DNA repair compared to the more sensitive brown bullhead (Ameriurus nebulosus). In order to measure NER, primary cultured hepatocytes of both species were exposed to UV light (10-40 J/m2) and collected at 0, 24, 48 and 72 h after exposure. Total DNA was extracted from the cells and incubated with T4 endonuclease V. Using alkaline gel electrophoresis, endonuclease sensitive sites (ESS) were quantified. Results from the ESS assay indicated there was a UV dose-response increase in thymine dimers from 0 to 40 J/m2. However, no repair (decrease in number of ESS) occurred in either fish species over a 72-h time period. When cells were exposed to photoreactivating fluorescent light, repair was detected. These studies highlight the difficulty of measuring NER in fish and are consistent with the low levels of NER reported by other researchers in fish.  相似文献   

14.
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.  相似文献   

15.
E. coli possesses an efficient repair mechanism able to remove pyrimidine dimers from UV-irradiated DNA, which is catalyzed by UvrABC endonuclease. In E. coli B/r Hcr+ cells transformed with a multicopy plasmid harboring a gene coding for UvrA, the excision capacity was greatly reduced. The course of thymine dimer excision was investigated using the enzymatic as well as the radiochromatographic method and the results are discussed in term of nonspecific interaction between the excess of UvrA protein and undamaged DNA duplex.  相似文献   

16.
The incidence of pyrimidine dimer formation and the kinetics of DNA repair in African green monkey kidney CV-1 cells after ultraviolet (UV) irradiation were studied by measuring survival, T4 endonuclease V-sensitive sites, the fraction of pyrimidine dimers in acid-insoluble DNA as determined by thin layer chromatography (TLC), and repair replication. CV-1 cells exhibit a survival curve with extrapolation number n = 7.8 and Do = 2.5 J/m2. Pyrimidine dimers were lost from acid-insoluble DNA more slowly than endonuclease-sensitive sites were lost from or new bases were incorporated into high molecular weight DNA during the course of repair. Growth of CV-1 cultures in [3H]thymidine or X-irradiation (2 or 10 krads) 24 h before UV irradiation had no effect on repair replication induced by 25 J/m2 of UV. These results suggest that pyrimidine dimer excision measurements by TLC are probably unaffected by radiation from high levels of incorporated radionuclides. The endonuclease-sensitive site and TLC measurements can be reconciled by the assumption that pyrimidine dimers are excised from high molecular weight DNA in acid-insoluble oligonucleotides that are slowly degraded to acid-soluble fragments.  相似文献   

17.
DNA excision repair modulates the mutagenic effect of many genotoxic agents. The recently observed strand specificity for removal of UV-induced cyclobutane dimers from actively transcribed genes in mammalian cells could influence the nature and distribution of mutations in a particular gene. To investigate this, we have analyzed UV-induced DNA repair and mutagenesis in the same gene, i.e. the hypoxanthine phosphoribosyl-transferase (hprt) gene. In 23 hprt mutants from V79 Chinese hamster cells induced by 2 J/m2 UV we found a strong strand bias for mutation induction: assuming that pre-mutagenic lesions occur at dipyrimidine sequences, 85% of the mutations could be attributed to lesions in the nontranscribed strand. Analysis of DNA repair in the hprt gene revealed that more than 90% of the cyclobutane dimers were removed from the transcribed strand within 8 hours after irradiation with 10 J/m2 UV, whereas virtually no dimer removal could be detected from the nontranscribed strand even up to 24 hr after UV. These data present the first proof that strand specific repair of DNA lesions in an expressed mammalian gene is associated with a strand specificity for mutation induction.  相似文献   

18.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

19.
The main purpose of this study was to determine whether enhancement of repair capacity would attenuate mitochondrial DNA oxidative damage and result in greater cell survival under stressful conditions. The repair of oxidative damage is initiated by DNA glycosylases, which catalyze the excision of oxidized bases, such as 8-hydroxydeoxyguanosine (8-oxodG). Drosophila DNA glycosylases, dOgg1 and RpS3, were ectopically expressed within the mitochondrial matrix in Drosophila S2 cells, causing a severalfold decrease in the levels of 8-oxodG in mitochondrial DNA. Unexpectedly, cells did not show increased resistance to oxidative stress, but instead became more susceptible to treatment with hydrogen peroxide or paraquat. Even in the absence of oxidative challenge, cells expressing RpS3 or dOgg1 in mitochondria exhibited increased apoptosis relative to controls, as determined by flow-cytometric analysis of Annexin V and DNA degradation measured by the Comet assay. Another notable finding was that ectopic expression of either dOgg1 or RpS3 in mitochondria increased cell survival after exposure to the nitric oxide donor SNAP. These results suggest that ectopic expression of one of the constituents of the DNA repair system in mitochondria may cause a perturbation in the base excision repair pathway and lower, rather than enhance, survivability.  相似文献   

20.
Capacity for excision repair of ultraviolet radiation damage to DNA in primary cultures of mouse embryonic cells is dependent on the gestational stage and the duration of in vitro growth. Fibroblasts of mouse embryos at 13–15 days gestation excise thymine dimers and perform unscheduled DNA synthesis after ultraviolet radiation. After several successive transfers in vitro, concomitantly with a pronounced reduction in growth rate, ability for excision repair decreases. DNA repair capacity is impaired in cells obtained from embryos at late stages of development (17–19 days gestation). Experiments with epithelial kidney cells from 5-day-old mice indicate that capacity for excision repair may depend on cell type and its origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号