首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selected glycolytic enzymes (including phosphoglucose isomerase, aldolase, glyceraldehyde phosphate dehydrogenase, enolase, pyruvate kinase and lactate dehydrogenase), as well as glycogen phosphorylase, creatine kinase, and adenylate kinase, bound to phosphofructokinase immobilized on an agarose gel. The affinity of phosphofructokinase to these various proteins differed, with phosphorylase exhibiting the strongest binding. Binding was reversed either by: (1) elution with high-ionic-strength buffer (0.4 M KCl); (2) the addition of a 5-10 mM concentration of ATP; or (3) high concentrations of fructose 6-phosphate (5 mM).  相似文献   

2.
Cryptosporidium parvum is one of the major causes of waterborne diseases worldwide. This protozoan parasite depends mainly on the anaerobic oxidation of glucose for energy production. In order to identify the differences in the three-dimensional structure of key glycolytic enzymes of C. parvum and its human host, we have expressed, purified and crystallized recombinant versions of three important glycolytic enzymes of the parasite, namely, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase. Lactate dehydrogenase has been crystallized in the absence and in the presence of its substrates and cofactors, while pyruvate kinase and glyceraldehyde 3-phosphate dehydrogenase were crystallized only in the apo-form. X-ray diffraction data have been collected for all crystals.  相似文献   

3.
The protein kinase C (PKC) family regulates macrophage function involved in host defense against infection. In this study, we investigated the role of macrophage PKC-alpha in the uptake and subsequent fate of Leishmania donovani promastigotes and Legionella pneumophila infections. To this end, we used clones of the murine macrophage cell line RAW 264.7 overexpressing a dominant-negative (DN) mutant of PKC-alpha. While phagocytosis of L. donovani promastigotes was not affected by DN PKC-alpha overexpression, their intracellular survival was enhanced by 10- to 20-fold at 48 h postinfection. Intracellular survival of a L. donovani mutant defective in lipophosphoglycan repeating units synthesis, which normally is rapidly degraded in phagolysosomes, was enhanced by 100-fold at 48 h postinfection. However, IFN-gamma-induced leishmanicidal activity was not affected by DN PKC-alpha overexpression. Similar to macrophages from genetically resistant C57BL/6 mice, control RAW 264.7 cells were not permissive for the intracellular replication of Legionella pneumophila. In contrast, DN PKC-alpha-overexpressing RAW 264.7 clones were phenotypically similar to macrophages from genetically susceptible A/J mice, as they allowed intracellular replication of L. pneumophila. Permissiveness to L. pneumophila was not the consequence of a general defect in the microbicidal capacities because killing of a temperature-sensitive mutant of Pseudomonas aeruginosa was normal in DN PKC-alpha-overexpressing RAW 264.7 clones. Collectively, these results support a role for PKC-alpha in the regulation of innate macrophage functions involved in the control of infection by intracellular parasites.  相似文献   

4.
Ricin induced apoptotic nuclear morphological changes in mouse macrophage cell line RAW264.7 cells at concentrations sufficient to cause severe protein synthesis inhibition. Ricin also induced the release of tumor necrosis factor-alpha (TNF-alpha) from this cell line in a dose-dependent manner but the profile was bell-shaped. However, the isolated galactose-specific ricin B-chain had no such effects. These results suggest that the receptor-binding of ricin through the B-chain is not enough, and subsequent attack on the intracellular target, i.e., the 28S ribosomal RNA (rRNA), by the A-chain of internalized ricin is required for the effects of ricin. Z-D-CH2-DCB, a caspase family inhibitor, showed potent inhibition of the release of TNF-alpha from RAW264.7 cells as well as blockage of the induction of apoptosis by ricin. Furthermore, SB202190, a specific P38 mitogen-activated protein (MAP) kinase inhibitor that strongly inhibits the release of TNF-alpha, also showed significant inhibition of ricin-induced apoptosis. These results suggest that there may be cross-talk between the pathways leading to the release of TNF-alpha and apoptosis. Time course analysis revealed that the activation of p38 MAP kinase started prior to the induction of TNF-alpha release and apoptosis. Since the activation of p38 MAP kinase in ricin-treated RAW264.7 cells was not prevented by Z-D-CH2-DCB, the activation of p38 MAP kinase may occur upstream of the caspase cascade. Among the other protein synthesis inhibitors examined, modeccin and anisomycin, which can trigger a ribotoxic stress response similar to ricin, induced the release of TNF-alpha, but emetine and cycloheximide did not. These results suggest that the specific attack on the 28S ribosomal RNA and the resulting ribotoxic stress response may trigger the multiple signal transduction pathways through the activation of p38 MAP kinase, which in turn leads to TNF-alpha release and apoptosis.  相似文献   

5.
Control of glycolysis in cerebral cortex slices   总被引:28,自引:18,他引:10       下载免费PDF全文
1. Intracellular concentrations of intermediates and cofactors of glycolysis were measured in guinea-pig cerebral cortex slices incubated under varying conditions. 2. Comparison of mass-action ratios with apparent equilibrium constants for the reactions of glycolysis showed that hexokinase, phosphofructokinase and pyruvate kinase catalyse reactions generally far from equilibrium, whereas phosphoglucose isomerase, aldolase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, adenlyate kinase and creatine phosphokinase are generally close to equilibrium. The possibility that glyceraldehyde 3-phosphate dehydrogenase may catalyse a ;non-equilibrium' reaction is discussed. 3. Correlation of changes in concentrations of substrates for enzymes catalysing ;non-equilibrium' reactions with changes in rates of glycolysis caused by alteration of the conditions of incubation showed that hexokinase, phosphofructokinase, pyruvate kinase and possibly glyceraldehyde 3-phosphate dehydrogenase are subject to metabolic control in cerebral cortex slices. 4. It is suggested that the glycolysis is controlled by two regulatory systems, the hexokinase-phosphofructokinase system and the glyceraldehyde 3-phosphate dehydrogenase-pyruvate kinase system. These are discussed. 5. It is concluded that the rate of glycolysis in guinea-pig cerebral cortex slices is limited either by the rate of glucose entry into the slices or by the hexokinase-phosphofructokinase system. 6. It is concluded that addition of 0.1mm-ouabain to guinea-pig cerebral cortex slices causes inhibition of either glyceraldehyde 3-phosphate dehydrogenase or phosphoglycerate kinase or both, in a manner independent of the known action of ouabain on the sodium- and potassium-activated adenosine triphosphatase.  相似文献   

6.
Double-stranded RNA-dependent protein kinase (PKR) plays a critical role in antiviral defence of the host cells. PKR is also involved in cell cycle progression, cell proliferation, cell differentiation, tumorigenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification of osteoblasts. However, it is unknown about the role of PKR in osteoclast differentiation. A dominant-negative PKR mutant cDNA, in which the amino acid lysine at 296 was replaced with arginine, was transfected into RAW264.7 cells. We have established the cell line that stably expresses the PKR mutant gene (PKR-K/R). Phosphorylation of PKR and α-subunit of eukaryotic initiation factor 2 was not stimulated by polyinosic-polycytidylic acid in the PKR-K/R cells. RANKL stimulated the formation of TRAP-positive multinuclear cells in RAW264.7 cells. However, TRAP-positive multinuclear cells were not formed in the PKR-K/R cells even when the cells were stimulated with higher doses of RANKL. A specific inhibitor of PKR, 2-aminopurine, also suppressed the RANKL-induced osteoclast differentiation in RAW264.7 cells. The expression of macrophage fusion receptor and dendritic cell-specific transmembrane protein significantly decreased in the PKR-K/R cells by real time PCR analysis. The results of RT-PCR revealed that the mRNA expression of osteoclast markers (cathepsin K and calcitonin receptor) was suppressed in the PKR-K/R cells and RAW264.7 cells treated with 2-aminopurine. Expression of NF-κB protein was suppressed in the PKR-K/R cells and 2-aminopurine-treated RAW264.7 cells. The level of STAT1 protein expression was elevated in the PKR-K/R cells compared with that of the wild-type cells. Immunohistochemical study showed that PKR was localized in osteoclasts of metatarsal bone of newborn mouse. The finding that the PKR-positive multinuclear cells should be osteoclasts was confirmed by TRAP-staining. Our present study indicates that PKR plays important roles in the differentiation of osteoclasts.  相似文献   

7.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

8.
Kay Denyer  Alison M. Smith 《Planta》1988,173(2):172-182
In order to determine whether the enzymes required to convert triose phosphate to acetyl CoA were present in pea (Pisum sativum L.) seed plastids, a rapid, mechanical technique was used to isolate plastids from developing cotyledons. The plastids were intact and the extraplastidial contamination was low. The following glycolytic enzymes, though predominantly cytosolic, were found to be present in plastids: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), and pyruvate kinase(EC 2.7.1.40). Evidence is presented which indicates that plastids also contained low activities of enolase (EC 4.2.1.11) and phosphoglycerate mutase (EC 2.7.5.3). Pyruvate dehydrogenase, although predominantly mitochondrial, was also present in plastids. The plastidial activities of the above enzymes were high enough to account for the rate of lipid synthesis observed in vivo.Abbreviations FPLC fast protein liquid chromatography - PPi pyrophosphate  相似文献   

9.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

10.
Prodigiosins are natural red pigments that have multi-biological activities. Recently, we discovered a marine bacterial strain, which produces a red pigment. Extensive two-dimensional nuclear magnetic resonance and mass spectrometry analysis showed that the pigment is a prodigiosin analogue (PG-L-1). Here, we investigated the effect of PG-L-1 on NADPH oxidase activity in macrophage cells. PG-L-1 significantly inhibited superoxide anion (O(2)(-)) production by phorbol 12-myristate 13-acetate (PMA)-stimulated RAW 264.7 cells, a mouse macrophage cell line. The ED(50) value was estimated to be approximately 0.3 microM. PG-L-1 had no direct scavenging effect on O(2)(-) generated by hypoxanthine/xanthine oxidase system in electron spin resonance-spin trapping determinations, suggesting that this compound directly acts on the O(2)(-) production system, NADPH oxidase, in macrophage cells. We further investigated the effect of PG-L-1 on the behaviour of the cytosolic components of the NADPH oxidase, p67(phox), p47(phox), p40(phox), Rac and protein kinase C (PKC), in PMA-stimulated RAW 264.7 cells. Although PG-L-1 showed no effect on the activation of PKC, the immunoblotting analysis using specific antibodies showed that PG-L-1 strongly inhibits the association of p47(phox) and Rac in the plasma membrane of PMA-stimulated RAW 264.7 cells. These results suggest that PG-L-1 inactivates NADPH oxidase through the inhibition of the binding of p47(phox) and Rac to the membrane components of NADPH oxidase.  相似文献   

11.
Highly charged polyanionic ligands of the scavenger receptor trigger macrophage secretion of urokinase-type plasminogen activator (uPA). In experiments reported here, we have investigated the intracellular and extracellular regulation of polyanion-induced macrophage plasminogen activation. Exposure of a macrophage cell line (RAW264.7) to either fucoidan or phorbol myristate acetate (PMA) stimulates the secretion of uPA, whereas calcium ionophore or dibutyryl cyclic AMP had no effect. Moreover, preincubation of macrophages with inhibitors of protein kinase C reduced (50-60%) the ability of both fucoidan and PMA to trigger the secretion of uPA, whereas aspirin and eicosatetraenoic acid had no effect. Both PMA and fucoidan treatment of RAW264.7 cells resulted in a rapid and transient increase in the steady state levels of uPA mRNA. However, in marked contrast to that observed with PMA, fucoidan-induced expression of RAW264.7 uPA activity was partially insensitive to cycloheximide and actinomycin D. In addition, fucoidan-induced uPA activity was detected in conditioned media in as little as 15 min, whereas PMA-induced uPA activity did not increase until 2 h. In addition to stimulating macrophage secretion of uPA, fucoidan bound uPA and had a small stimulatory affect on uPA activity. The binding does not interfere with the catalytic site on the B chain, or require the receptor binding or kringle domains on the A chain.  相似文献   

12.
Macrophage activation for tumor cell killing is a multistep pathway in which responsive macrophages interact sequentially with priming and triggering stimuli in the acquisition of full tumoricidal activity. A number of mediators have been identified which have activating capability, including in particular IFN-gamma and bacterial LPS. Although the synergistic functional response of normal macrophages to sequential incubation with these activation signals has been well-established, characterization of the intermediate stages in the activation pathway has been difficult. We have developed a model system for examination of various aspects of macrophage activation, through the use of the murine macrophage tumor cell line, RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both IFN-gamma and LPS in the development of tumor cytolytic activity. In addition, these cells can be stably primed by the administration of gamma-radiation. In the studies reported here, we have used RAW 264.7 cells treated with IFN-gamma alone or with IFN-gamma plus LPS to stimulate the production of rat mAb probes recognizing cell surface changes occurring during the activation process. In this way we have identified three Ag associated with intermediate stages of the activation process. One Ag, TM-1, is expressed on RAW 264.7 cells primed by IFN-gamma or gamma-radiation. This surface Ag thus identifies cells at the primed cell intermediate stage of the tumoricidal activation pathway regardless of the mechanism of activation. A second Ag, TM-2, is expressed on IFN-treated RAW 264.7 cells but not on RAW 264.7 cells primed with gamma-radiation alone. Expression of this Ag can be induced by treatment of irradiated cells with IFN-gamma, but is not induced by IFN-gamma treatment of a noncytolytic cell line, WEHI-3. This Ag thus appears to be an IFN-inducible cell surface protein associated specifically with macrophage activation for tumoricidal activity. Finally, Ag TM-3 is detectable on RAW 264.7 cells primed by either IFN-gamma or gamma-radiation, after subsequent triggering of the primed cells with LPS. The addition of the mAb recognizing this antigen to the function assay of tumor cell killing can inhibit they lytic activity of both triggered cells. Thus, this Ag may play a role in the antitumor effector functions of activated macrophages. Overall, the results suggest that these mAb can serve as useful tools for identification of molecules associated with the process of macrophage activation for tumor cell killing.  相似文献   

13.
ABSTRACT. The presence of 14 enzymes was investigated using purified spores of the microsporidian Nosema grylli from fat body of the crickets Gryllus bimaculatus . Glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphoglucomutase (EC 5.4.2.2), phosphoglucose isomerase (EC 5.3.1.9), fructose 6-phosphate kinase (EC 2.7.1.11), aldolase (EC 4.1.2.13), 3-phosophoglycerate kinase (EC 2.7.2.3), pyruvate kinase (EC 2.7.1.40) and glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) were detected with activities of 15 ± 1, 7 ± 1, 1,549 ± 255, 10 ± 1, 5 ± 1, 16 ± 4, 6 ± 1 and 16 ± 2 nmol/min. mg protein, respectively. Hexokinase (EC 2.7.1.1), NAD-dependent malate dehydrogenase (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), lactate dehydrogenase (EC 1.1.1.27), alcohol dehydrogenase (EC 1.1.1.1) and succinate dehydrogenase (EC 1.3.99.1) were not detectable. These results suggest the catabolism of carbohydrates in microsporidia occurs via the Embden-Meyerhof pathway. Glycerol 3-phosphate dehydrogenase may reoxidize NADH which is produced by glyceraldehyde 3-phosphate dehydrogenase in glycolysis.  相似文献   

14.
The extent of binding of glycolytic enzymes to the particulate fraction of homogenates was measured in bovine psoas muscle before and after electrical stimulation. In association with an accelerated glycolytic rate on stimulation, there was a significant increase in the binding of certain glycolytic enzymes, the most notable of which were phosphofructokinase, aldolase, glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase. From the known association of glycolytic enzymes with the I-band of muscle it is proposed that electrical stimulation of anaerobic muscle increases enzyme binding to actin filaments. Calculations of the extent of enzyme binding suggest that significant amounts of enzyme protein, particularly aldolase and glyceraldehyde 3-phosphate dehydrogenase, are associated with the actin filaments. The results also imply that kinetic parameters derived from considerations of the enzyme activity in the soluble state may not have direct application to the situation in the muscle fibre, particularly during accelerated glycolysis.  相似文献   

15.
Summary Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB ligand (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell cultures, which are poorly suited to molecular and transgene studies because of the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study, we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP)-positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP-positive multinuclear cells. Clones capable of forming large TRAP-positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation.  相似文献   

16.
The synthesis of a series of SS'-polymethylenebis(methanethiosulphonates) including the pentane, hexane, octane, decane and dodecane derivatives is described. These derivatives were synthesized by condensation between dibromoalkanes and potassium methanethiosulphonate in refluxing methanol and this seems an especially versatile reaction for the synthesis of asymmetric thiosulphonate derivatives. The synthesis of SS'-[1,8-3H4]-octamethylenebis(methanethiosulphonate) was also perfomed. Cross-linking was demonstrated in the four enzymes lactate dehydrogenase, phosphofructokinase, pyruvate kinase and glyceraldehyde 3-phosphate dehydrogenase. For all four enzymes cross-linking was efficiently reversed by reducing conditions in denaturing solvents. The reaction with glyceraldehyde 3-phosphate dehydrogenase was unique in that only the cross-linked dimer was produced in significant amounts (greater than 90% of total products as dimer). This reaction was followed in detail with radioactive cross-linking reagent. Inhibition of enzyme activity was extremely fast and showed an asymmetric distribution of enzyme activity on subunits. Thus complete modification of only one subunit resulted in up to 75% inhibition of enzyme activity. Reaction of glyceraldehyde 3-phosphate dehydrogenase with 1.25 mol of SS'-octamethylenebis(methanethiosulphonate) per mol of enzyme subunit produced two species of protein. The first species was obtained in 20% yield and was only partially re-activated on mild reduction with 2-mercaptoethanol. The second species was isolated in 66% yield and was completely re-activated on mild reduction. Before reduction there was 4 mol of inhibitor per tetramer for the latter species, and more than 95% of the enzyme was present as a dimer on non-reducing electrophoresis. After mild reduction 2 mol of inhibitor was still bound per tetramer, the enzyme was now catalytically active and the dimer was still the major structure on non-reducing electrophoresis. Thus mild reduction of SS'-octamethylenebis(methanethiosulphonate-treated glyceraldehyde 3-phosphate dehydrogenase enabled the production of active enzyme in which there is a stable cross-link across one of the molecular axes of the tetrameric enzyme. This cross-link was only reversed if reduction was performed when the enzyme was denatured. The molecular weight of cross-linked and re-activated cross-linked glyceraldehyde 3-phosphate dehydrogenase was established as 144000 (tetramer) by sucrose-density-gradient centrifugation. These observations are interpreted in terms of the molecular structure of glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

17.
The effect of inhibition of mitogen and stress-activated protein kinases 1/2 (MSK1/2) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was investigated. Pretreatment with Ro 31-8220, an inhibitor of MSK1/2, induced cell death in LPS-stimulated RAW 264.7 cells. In contrast, calphostin C, another inhibitor of protein kinase C, did not cause cell death. Cell death was not mediated by the release of pro-inflammatory mediators from LPS-stimulated RAW 264.7 cells. Cell death was accompanied by DNA fragmentation and annexin V binding, suggesting apoptotic cell death. Further, several caspase inhibitors did not prevent LPS-induced cell death of Ro 31-8220-pretreated RAW 264.7 cells. Nuclear translocation of apoptosis-inducing factor (AIF) was detected in Ro 31-8220-pretreated cells after LPS stimulation. Cell death was due to mitochondrial damage. Ro 31-8220 exclusively inhibited the phosphorylation of cAMP-responsive element binding protein (CREB), a substrate of MSK1/2. RAW 264.7 cells transfected with the dominant-negative MSK1 clones underwent cell death in response to LPS. Hence, it was suggested that MSK1/2 might play a critical role in the survival of LPS-stimulated RAW 264.7 cells.  相似文献   

18.
1. Two different gels have been prepared suitable for the separation of a number of enzymes, in particular NAD+-dependent dehydrogenases, by affinity chromatography. For both the matrix used was Sepharose 4B. For preparation (a), NAD+–Sepharose, 6-aminohexanoic acid has been coupled to the gel by the cyanogen bromide method and then NAD+ was attached by using dicyclohexylcarbodi-imide; for preparation (b), AMP–Sepharose, N6-(6-aminohexyl)-AMP has been coupled directly to cyanogen bromide-activated gel. 2. Affinity columns of both gels retain only the two enzymes when a mixture of bovine serum albumin, lactate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase is applied. Subsequent elution with the cofactor NAD+ yields glyceraldehyde 3-phosphate dehydrogenase whereas lactate dehydrogenase is eluted by applying the same molarity of the reduced cofactor. 3. The binding of both glyceraldehyde 3-phosphate dehydrogenase and lactate dehydrogenase to the gel tested, AMP–Sepharose, is strong enough to resist elution by gradients of KCl of up to at least 0.5m. A 0.0–0.15m gradient of the competitive inhibitor salicylate, however, elutes both enzymes efficiently and separately. 4. The elution efficiency of lactate dehydrogenase from AMP–Sepharose has been examined by using a series of eluents under comparable conditions of concentration etc. The approximate relative efficiencies are: 0 (lactate); 0 (lactate+semicarbazide); 0 (0.5mm-NAD+); 80 (lactate+NAD+); 95 (lactate+semicarbazide+NAD+); 100 (0.5mm-NADH). 5. All contaminating lactate dehydrogenase activity can be removed from commercially available crude pyruvate kinase in a single-step procedure by using AMP–Sepharose.  相似文献   

19.
Mushroom-derived polysaccharides like β-glucan are being investigated for therapeutic properties for a long time, but their mode of action of immunomodulatory properties is not well established. In the present study, a heteroglucan from Astraeus hygrometricus designated as AE2 is investigated for its macrophage stimulatory properties using RAW 264.7 cell line. An augmentation of nitric oxide production is observed in the presence of AE2 in a dose-dependent manner due to up-regulation of iNOS (inducible NO synthase) expression; hence NF κB (nuclear factor κB) pathway is investigated. RAW 264.7 cells endured phosphorylation of Ikk (IκB kinase) and subsequently NF κB is translocated to the nucleus. Further, the PKC (protein kinase C) level of the cells enhanced significantly. We also found that AE2 could induce the phosphorylation of p38 MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2), MEK (MAPK/ERK kinase) and JNK (c-Jun N-terminal kinase), whereas it failed to induce phosphorylation of JAK2 (Janus kinase 2) and STAT1. These results indicated that the macrophage activation by AE2 might be exerted, at least in part, via MAPKs (mitogen-activated protein kinases) pathway of signal transduction.  相似文献   

20.
Irie T  Muta T  Takeshige K 《FEBS letters》2000,467(2-3):160-164
Stimulation of monocytes/macrophages with lipopolysaccharide (LPS) results in activation of nuclear factor-kappaB (NF-kappaB), which plays crucial roles in regulating expression of many genes involved in the subsequent inflammatory responses. Here, we investigated roles of transforming growth factor-beta activated kinase 1 (TGF-TAK1), a mitogen-activated protein kinase kinase kinase (MAPKKK), in the LPS-induced signaling cascade. A kinase-negative mutant of TAK1 inhibited the LPS-induced NF-kappaB activation both in a macrophage-like cell line, RAW 264.7, and in human embryonic kidney 293 cells expressing toll-like receptor 2 or 4. Furthermore, we demonstrated that endogenous TAK1 is phosphorylated upon simulation of RAW 264.7 cells with LPS. These results indicate that TAK1 functions as a critical mediator in the LPS-induced signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号