首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal pro-peptide of 77 amino acid residues is essential for the folding of subtilisin, an alkaline serine protease from Bacillus subtilis. The synthetic pro-peptide has been shown to be capable of guiding the proper folding of denatured subtilisin to enzymatically active enzyme. Thus the pro-peptide serves as an intramolecular chaperone, which is removed by an autoprocessing reaction after the completion of the folding. With use of localized polymerase chain reaction random mutagenesis a total of 25 amino acid substitution mutations that affected subtilisin activities were isolated. These mutations occurred in a high frequency at the hydrophobic regions of the pro-peptide. For one of the mutations, M(-60)T, a second-site suppressor mutation, S(188)L, was isolated within the mature region. These results suggest that the pro-peptide consists of a few functional regions which interact with specific regions of the mature region of subtilisin during the folding process.  相似文献   

2.
The subtilisin propeptide functions as an intramolecular chaperone (IMC) that facilitates correct folding of the catalytic domain while acting like a competitive inhibitor of proteolytic activity. Upon completion of folding, subtilisin initiates IMC degradation to complete precursor maturation. Existing data suggest that the chaperone and inhibitory functions of the subtilisin IMC domain are interdependent during folding. Based on x-ray structure of the IMC-subtilisin complex, we introduce a point mutation (E112A) to disrupt three hydrogen bonds that stabilize the interface between the protease and its IMC domain. This mutation within subtilisin does not alter the folding kinetics but dramatically slows down autoprocessing of the IMC domain. Inhibition of E112A-subtilisin activity by the IMC added in trans is 35-fold weaker than wild-type subtilisin. Although the IMC domain displays substantial loss of inhibitory function, its ability to chaperone E112A-subtilisin folding remains intact. Our results show that (i) the chaperone activity of the IMC domain is not obligatorily linked with its ability to bind with and inhibit active subtilisin; (ii) degradation and not autoprocessing of the IMC domain is the rate-limiting step in precursor maturation; and (iii) the Glu(112) residue within the IMC-subtilisin interface is not crucial for initiating folding but is important in maintaining the IMC structure capable of binding subtilisin.  相似文献   

3.
Subtilisin is produced as a precursor that requires its N-terminal propeptide to chaperone the folding of its protease domain. Once folded, subtilisin adopts a remarkably stable conformation, which has been attributed to a high affinity Ca(2+) binding site. We investigated the role of the metal ligand in the maturation of pro-subtilisin, a process that involves folding, autoprocessing and partial degradation. Our results establish that although Ca(2+) ions can stabilize the protease domain, the folding and autoprocessing of pro-subtilisin take place independent of Ca(2+) ion. We demonstrate that the stabilizing effect of calcium is observed only after the completion of autoprocessing and that the metal ion appears to be responsible for shifting the folding equilibrium towards the native conformation in both mature subtilisin and the autoprocessed propeptide:subtilisin complex. Furthermore, the addition of active subtilisin to unautoprocessed pro-subtilisin in trans does not facilitate precursor maturation, but rather promotes rapid autodegradation. The primary cleavage site that initiates this autodegradation is at Gln19 in the N-terminus of mature subtilisin. This corresponds to the loop that links alpha-helix-2 and beta-strand-1 in mature subtilisin and has indirect effects on the formation of the Ca(2+) binding site. Our results show that the N-terminus of mature subtilisin undergoes rearrangement subsequent to propeptide autoprocessing. Since this structural change enhances the proteolytic stability of the precursor, our results suggest that the autoprocessing reaction must be completed before the release of active subtilisin in order to maximize folding efficiency.  相似文献   

4.
The gene for an alkaline serine protease from alkalophilic Bacillus sp. NKS-21 (subtilisin ALP I) was cloned, and its nucleotide sequence was determined. The gene (aprQ) contained an open reading frame of 1125 bp, encoding a primary product of 374 amino acids. The mature protease, composed of 272 amino acids, was preceded by a putative signal sequence of 37 amino acids and a pro-sequence of 65 amino acids. The mature protease conserved the catalytic triad, Asp, His, and Ser, as subtilisin BPN or other subtilisins, and the subtilisin ALP I might belong to the subtilisin super family. The primary structure of subtilisin ALP I was compared and discussed with those of 13 subtilisins, 5 subtilisins from alkalophilic Bacillus, and 8 from neutrophiles. Low homology was shown between subtilisin ALP I and subtilisins from alkalophiles or subtilisins from neutrophiles. Forty-five amino acid residues of the mature protein of subtilisin ALP I were entirely independent of other subtilisins. According to the homology of ALP I with other subtilisins, subtilisin ALP I might be in the middle point between alkaline subtilisins and neutral ones.  相似文献   

5.
The amino-terminal pro-sequence consisting of 77 amino acid residues is required to guide the folding of secreted subtilisin E, a serine protease, into active, mature enzyme (ikemura et al., 1987). Furthermore, denatured subtilisin E can be folded to active enzyme in an intermolecular process with the aid of an exogenously added pro-subtilisin E, the active site of which was mutated (Zhu et al., 1989). In this report, we have synthesized the pro-peptide of 77 residues (corresponding to -1 to -77 in the sequence, where residue +1 is the N-terminal amino acid residue of the mature protein), and have found that it could intermolecularly complement the folding of denatured subtilisin E to active enzyme. Furthermore, we have found that the synthetic pro-peptide exhibits specific strong binding to the active mature enzyme by inhibiting it competitively at its active centre with an upper limit to a Ki of 5.4 x 10(-7). In contrast, synthetic pro-peptides corresponding to -44 to -77, -1 to -64 and -1 to -43 inhibited the enzyme with Ki values weaker by two orders of magnitude. The results indicate that the sequence extending from -1 to -77 is essential for specificity of interaction, perhaps generating a conformation that accounts for both roles found hitherto, i.e. specific binding to the active centre, and guiding of the refolding to active enzyme. Thus these results suggest that the pro-peptide functions as an intramolecular chaperone [corrected].  相似文献   

6.
The 77 residue propeptide at the N-terminal end of subtilisin E plays an essential role in subtilisin folding as a tailor-made intramolecular chaperone. Upon completion of folding, the propeptide is autoprocessed and removed by subtilisin digestion. This propeptide-mediated protein folding has been used as a paradigm for the study of protein folding. Here, we show by three independent methods, that the propeptide domain and the subtilisin domain show distinctive intrinsic stability that is obligatory for efficient autoprocessing of the propeptide domain. Two tryptophan residues, Trp106 and Trp113, on the surface of subtilisin located on one of the two helices that form the interface between the propeptide and the subtilisin domains play a key role in maintaining the distinctive instability of the propeptide domain, after completion of folding. When either of the Trp residues was substituted with Tyr, the characteristic biphasic heat denaturation profile of two domains unfolding was not observed, resulting in a single transition of denaturation. The results provide evidence that the propeptide not only plays an essential role in subtilisin folding, but upon completion of folding it behaves as an independent domain. Once the propeptide-mediated folding is completed, the propeptide domain is readily eliminated without interference from the subtilisin domain. This "autotomic" behavior of the propeptide may be a prevailing principle in propeptide-mediated protein folding.  相似文献   

7.
Intramolecular chaperone: the role of the pro-peptide in protein folding.   总被引:3,自引:0,他引:3  
M Inouye 《Enzyme》1991,45(5-6):314-321
Subtilisin, an alkaline serine protease, is produced in the bacterium as pre-pro-subtilisin; the pre-peptide of 29 amino acid residues is the signal peptide essential for the secretion of prosubtilisin from the cytoplasm into the culture medium. On the other hand, the pro-peptide of 77 residues covalently linked to the amino terminal end of the subtilisin intramolecularly guides the folding of subtilisin into the active enzyme. Importantly, the pro-peptide is not required for the enzymatic activity and is removed intramolecularly by autoprocessing upon the completion of the protein folding. In this review, I will first summarize all the data concerning the functions of the subtilisin pro-peptide. On the basis of these results, I shall discuss a new general concept, an intramolecular chaperone to explain the essential role of the pro-peptide in protein folding.  相似文献   

8.
The cysteine endopeptidase streptopain, an extracellular enzyme from pathogenic Streptococcus pyogenes, is synthesized as a precursor containing an NH2-terminal pro-sequence. The pro-sequence of streptopain was expressed in Escherichia coli and subjected to structural and functional investigation. Heat-induced denaturation of the pro-sequence studied using circular dichroism spectroscopy revealed that it forms a compact structure and represents an independently folded domain. The isolated pro-sequence exhibits high affinity towards mature streptopain and associates with its cognate enzyme by forming an equimolar complex. Refolding of denatured streptopain in the presence of pro-sequence in vitro facilitated recovery of active enzyme. Expression of the mature streptopain in E. coli either alone, or in trans with its pro-sequence as an independent polypeptide, led to the formation of insoluble protein aggregates or functionally active enzyme, respectively. These results demonstrate that the pro-sequence domain acts as an intramolecular chaperone that directs the correct folding of the mature streptopain.  相似文献   

9.
Jia Y  Liu H  Bao W  Weng M  Chen W  Cai Y  Zheng Z  Zou G 《FEBS letters》2010,584(23):4789-4796
Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model.  相似文献   

10.
Subtilisin E, an alkaline serine protease of Bacillus subtilis 168, is first produced as a precursor, pre-pro-subtilisin, which consists of a signal peptide for protein secretion (pre-sequence) and a peptide extension of 77 amino acid residues (pro-sequence) between the signal peptide and mature subtilisin. When the entire coding region for pre-pro-subtilisin E was cloned into an Escherichia coli expression vector, active mature subtilisin E was secreted into the periplasmic space. When the pre-sequence was replaced with the E. coli OmpA signal peptide, active subtilisin E was also produced. When the OmpA signal peptide was directly fused to the mature subtilisin sequence, no protease activity was detected, although this product had the identical primary structure as subtilisin E as a result of cleavage of the OmpA signal peptide and was produced at a level of approximately 10% of total cellular protein. When the OmpA signal peptide was fused to the 15th or 44th amino acid residue from the amino terminus of the pro-sequence, active subtilisin was also not produced. These results indicate that the pro-sequence of pre-pro-subtilisin plays an important role in the formation of enzymatically active subtilisin. It is proposed that the pro-sequence is essential for guiding appropriate folding of the enzymatically active conformation of subtilisin E.  相似文献   

11.
In order to analyze the role of the pro-sequence in folding of the alkaline serine protease subtilisin, localized random mutagenesis using the polymerase chain reaction with Taq DNA polymerase was employed to obtain mutations in the pro-sequence which prevent production of active protease. The unique aspect of this procedure is that random mutations can be easily generated in vitro over large but defined regions of a specific gene. The method was applied to a 458-base pair fragment encompassing the coding region of the pro-sequence of subtilisin, a region of the protein which has been shown to be required for proper folding. Protease-deficient mutants containing a variety of amino acid substitutions were isolated with a frequency of 4.3%. From analysis of these mutants, four independent amino acid substitution mutations in the pro-sequence were identified. The present results demonstrate that polymerase chain reaction is an efficient and simple method for obtaining random mutations within a localized region of a given gene.  相似文献   

12.
Several secreted proteases are synthesized with N-terminal propeptides that function as intramolecular chaperones (IMCs) and direct the folding of proteases to their native functional states. Using subtilisin E as our model system, we had earlier established that (i) release and degradation of the IMC from its complex with the protease upon completion of folding is the rate-determining step to protease maturation and, (ii) IMC of SbtE is an extremely charged, intrinsically unstructured polypeptide that adopts an alpha-beta structure only in the presence of the protease. Here, we explore the mechanism of IMC release and the intricate relationship between IMC structure and protease activation. We establish that the release of the first IMC from its protease domain is a non-deterministic event that subsequently triggers an activation cascade through trans-proteolysis. By in silico simulation of the protease maturation pathway through application of stochastic algorithms, we further analyze the sub-stages of the release step. Our work shows that modulating the structure of the IMC domain through external solvent conditions can vary both the time and randomness of protease activation. This behavior of the protease can be correlated to varying the release-rebinding equilibrium of IMC, through simulation. Thus, a delicate balance underlies IMC structure, release, and protease activation. Proteases are ubiquitous enzymes crucial for fundamental cellular processes and require deterministic activation mechanisms. Our work on SbtE establishes that through selection of an intrinsically unstructured IMC domain, nature appears to have selected for a viable deterministic handle that controls a fundamentally random event. While this outlines an important mechanism for regulation of protease activation, it also provides a unique approach to maintain industrially viable subtilisins in extremely stable states that can be activated at will.  相似文献   

13.
Some proteins have evolved to contain a specific sequence as an intramolecular chaperone, which is essential for protein folding but not required for protein function, as it is removed after the protein is folded by autoprocessing or by an exogenous protease. To date, a large number of sequences encoded as N-terminal or C-terminal extensions have been identified to function as intramolecular chaperones. An increasing amount of evidence has revealed that these intramolecular chaperones play an important role in protein folding both in vivo and in vitro. Here, we summarize recent studies on intramolecular chaperone-assisted protein folding and discuss the mechanisms as to how intramolecular chaperones play roles in protein folding.  相似文献   

14.
The crystal structure of an active site mutant of pro-Tk-subtilisin (pro-S324A) from the hyperthermophilic archaeon Thermococcus kodakaraensis was determined at 2.3 A resolution. The overall structure of this protein is similar to those of bacterial subtilisin-propeptide complexes, except that the peptide bond linking the propeptide and mature domain contacts with the active site, and the mature domain contains six Ca2+ binding sites. The Ca-1 site is conserved in bacterial subtilisins but is formed prior to autoprocessing, unlike the corresponding sites of bacterial subtilisins. All other Ca2+-binding sites are unique in the pro-S324A structure and are located at the surface loops. Four of them apparently contribute to the stability of the central alphabetaalpha substructure of the mature domain. The CD spectra, 1-anilino-8-naphthalenesulfonic acid fluorescence spectra, and sensitivities to chymotryptic digestion of this protein indicate that the conformation of pro-S324A is changed from an unstable molten globule-like structure to a stable native one upon Ca2+ binding. Another active site mutant, pro-S324C, was shown to be autoprocessed to form a propeptide-mature domain complex in the presence of Ca2+. The CD spectra of this protein indicate that the structure of pro-S324C is changed upon Ca2+ binding like pro-S324A but is not seriously changed upon subsequent autoprocessing. These results suggest that the maturation process of Tk-subtilisin is different from that of bacterial subtilisins in terms of the requirement of Ca2+ for folding of the mature domain and completion of the folding process prior to autoprocessing.  相似文献   

15.
In prsA (protein secretion) mutants of Bacillus subtilis, decreased levels of exoproteins, including α-amylase and subtilisins, are found extracellularly. The effect of prsA on subtilisin secretion is elaborated here. Extracytoplasmic folding and secretion of active subtilisin is assisted by the N-terminal pro-sequence of its precursor. In this paper we present evidence that the product of the prsA gene is additionally required for these processes in vivo. We examined inducible expression of different subtilisin-alkaline phosphatase fusion genes in the prsA3 mutant. We found massive degradation of the fusion proteins, and a lack of enzymatic activity in the protein secreted. We suggest that PrsA is a novel chaperone with a predicted extracytoplasmic location, and is important in vivo for the proper conformation of various exoproteins, including those with pro-sequence (like subtilisin) and those without (like α-amylase).  相似文献   

16.
Pro-aminopeptidase processing protease (PA protease) is a thermolysin-like metalloprotease produced by Aeromonas caviae T-64. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of PA protease and shows inhibitory activity toward its cognate mature enzyme. Moreover, the N-terminal propeptide strongly inhibits the autoprocessing of the C-terminal propeptide by forming a complex with the folded intermediate pro-PA protease containing the C-terminal propeptide (MC). In order to investigate the structural determinants within the N-terminal propeptide that play a role in the folding, processing, and enzyme inhibition of PA protease, we constructed a chimeric pro-PA protease by replacing the N-terminal propeptide with that of vibriolysin, a homologue of PA protease. Our results indicated that, although the N-terminal propeptide of vibriolysin shares only 36% identity with that of PA protease, it assists the refolding of MC, inhibits the folded MC to process its C-terminal propeptide, and shows a stronger inhibitory activity toward the mature PA protease than that of PA protease. These results suggest that the N-terminal propeptide domains in these thermolysin-like proteases may have similar functions, in spite of their primary sequence diversity. In addition, the conserved regions in the N-terminal propeptides of PA protease and vibriolysin may be essential for the functions of the N-terminal propeptide.  相似文献   

17.
Conformational diversity within unique amino acid sequences is observed in diseases like scrapie and Alzheimer's disease. The molecular basis of such diversity is unknown. Similar phenomena occur in subtilisin, a serine protease homologous with eukaryotic pro-hormone convertases. The subtilisin propeptide functions as an intramolecular chaperone (IMC) that imparts steric information during folding but is not required for enzymatic activity. Point mutations within IMCs alter folding, resulting in structural conformers that specifically interact with their cognate IMCs in a process termed "protein memory." Here, we show a mechanism that mediates conformational diversity in subtilisin. During maturation, while the IMC is autocleaved and subsequently degraded by the active site of subtilisin, enzymatic properties of this site differ significantly before and after cleavage. Although subtilisin folded by Ile-48 --> Thr IMC (IMCI-48T) acquires an "altered" enzymatically active conformation (SubI-48T) significantly different from wild-type subtilisin (SubWT), both precursors undergo autocleavage at similar rates. IMC cleavage initiates conformational changes during which the IMC continues its chaperoning function subsequent to its cleavage from subtilisin. Structural imprinting resulting in conformational diversity originates during this reorganization stage and is a late folding event catalyzed by autocleavage of the IMC.  相似文献   

18.
We previously reported purification and characterization of a 90k serine protease with pI 3.9 from Bacillus subtilis (natto) No. 16 [Kato et al. 1992 Biosci Biotechnol Biochem 56:1166]. The enzyme showed different and unique substrate specificity towards the oxidized B-chain of insulin from those of well-known bacterial serine proteases from Bacillus subtilisins. The structural gene, hspK, for the 90k serine protease was cloned and sequenced. The cloned DNA fragment contained a single open reading frame of 4302 bp coding a protein of 1433 amino acid residues. The deduced amino acid sequence of the 90k-protease indicated the presence of a typical signal sequence of the first 30 amino acids region and that there was a pro-sequence of 164 amino acid residues after the signal sequence. The mature region of the 90k-protease started from position 195 of amino acid residue, and the following peptide consisted of 1239 amino acid residues with a molecular weight of 133k. It might be a precursor protein of the 90k-protease, and the C-terminal region of 43k might be degraded to a mature protein from the precursor protein. The catalytic triad was thought to consist of Asp33, His81, and Ser259 from comparison of the amino acid sequence of the 90k-protease with those of the other bacterial serine proteases. The high-molecular-weight serine protease, the 90k-protease, may be an ancient form of bacterial serine proteases.  相似文献   

19.
Modification of substrate specificity of an autoprocessing enzyme is accompanied by a risk of significant failure of self-cleavage of the pro-region essential for activation. Therefore, to enhance processing, we engineered the pro-region of mutant subtilisins E of Bacillus subtilis with altered substrate specificity. A high-activity mutant subtilisin E with Ile31Leu replacement (I31L) as well as the wild-type enzyme show poor recognition of acid residues as the P1 substrate. To increase the P1 substrate preference for acid residues, Glu156Gln and Gly166Lys/Arg substitutions were introduced into the I31L gene based upon a report on subtilisin BPN' [Wells et al. (1987) Proc. Natl. Acad. Sci. USA 84, 1219-1223]. The apparent P1 specificity of four mutants (E156Q/G166K, E156Q/G166R, G166K, and G166R) was extended to acid residues, but the halo-forming activity of Escherichia coli expressing the mutant genes on skim milk-containing plates was significantly decreased due to the lower autoprocessing efficiency. A marked increase in active enzyme production occurred when Tyr(-1) in the pro-region of these mutants was then replaced by Asp or Glu. Five mutants with Glu(-2)Ala/Val/Gly or Tyr(-1)Cys/Ser substitution showing enhanced halo-forming activity were further isolated by PCR random mutagenesis in the pro-region of the E156Q/G166K mutant. These results indicated that introduction of an optimum arrangement at the cleavage site in the pro-region is an effective method for obtaining a higher yield of active enzymes.  相似文献   

20.
Kojima S  Iwahara A  Yanai H 《FEBS letters》2005,579(20):4430-4436
Pleurotus ostrearus proteinase A inhibitor 1 (POIA1), which was discovered as a protease inhibitor, is unique in that it shows sequence homology to the propeptide of subtilisin, which functions as an intramolecular of a cognate protease. In this study, we demonstrate that POIA1 can function as an intramolecular chaperone of subtilisin by in vitro and in vivo experiments. The specific cleavage between POIA1 and the mature region of subtilisin BPN' occurred in a refolding process of a chimera protein, and Bacillus cells transformed with a chimera gene formed a halo on a skim milk plate. The mutational analyses of POIA1 in the chimera protein suggested that the tertiary structure of POIA1 is required for such a function, and that an increase in its ability to bind to subtilisin BPN' makes POIA1 a more effective intramolecular chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号