首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The full-length cDNA sequence of interleukin-1beta (IL-1beta) from the Nile tilapia, Oreochromis niloticus, was determined by using PCR with primers designed from known fish IL-1beta sequences followed by elongation of the 5' and 3' ends using Rapid Amplification of cDNA Ends (RACE). The cDNA contains a 92-bp 5' untranslated region (UTR), a single open reading frame (ORF) of 732 bp that translates into a 243-amino acid molecule, a 341-bp 3' UTR with four cytokine RNA instability motifs (ATTTA), and a polyadenylation signal (AATAAA) at 15 nucleotides upstream of the poly(A) tail. The organization of the genomic IL-1beta based on the cDNA sequence appeared to be 4 introns and 5 exons. In comparison with known IL-1beta amino acid sequences, including human, catshark, trout, turbot, carp, sea bream, sea bass and goldfish, the amino acid sequence deduced from the cDNA sequence of Nile tilapia showed different levels of identity ranging from 25.32% to 66.80% and homology ranging from 41.88% to 82.19%. Although the entire cDNA sequence of Nile tilapia IL-1beta showed from 49.45% to 67.05% identity to those of other reported IL-1beta cDNAs, each exon also showed different levels of identity to the corresponding exons of other reported IL-1beta cDNAs. The highest nucleotide sequence identity for exon 1 and exons 2-5 of Nile tilapia IL-1beta was found in the corresponding exons of sea bream and sea bass, respectively. After in vitro stimulation with lipopolysaccharide (LPS), we found an increased level of IL-1beta expression in head kidney cells compared to that of unstimulated cells. However, this difference was no longer apparent after 4 h of stimulation, at which time the levels were similar in stimulated and unstimulated cells. Head kidney cells stimulated in vivo by an intraperitoneal injection of LPS showed a peak level of IL-1beta expression after 1 day and a decreased level after 3 days. At 7 days after stimulation, we were hardly able to detect IL-1beta expression.  相似文献   

2.
All jawed vertebrates possess a complex immune system, which is capable of anticipatory and innate immune responses. Jawless vertebrates posses an equally complex immune system but with no evidence of an anticipatory immune response. From these findings it has been speculated that the initiation and regulation of the immune system within vertebrates will be equally complex, although very little has been done to look at the evolution of cytokine genes, despite well-known biological activities within vertebrates. In recent years, cytokines, which have been well characterised within mammals, have begun to be cloned and sequenced within non-mammalian vertebrates, with the number of cytokine sequences available from primitive vertebrates growing rapidly. The identification of cytokines, which are mammalian homologues, will give a better insight into where immune system communicators arose and may also reveal molecules, which are unique to certain organisms. Work has focussed on interleukin-1 (IL-1), a major mediator of inflammation which initiates and/or increases a wide variety of non-structural, function associated genes that are characteristically expressed during inflammation. Other than mammalian IL-1β sequences there are now full cDNA sequences and genomic organisations available from bird, amphibian, bony fish and cartilaginous fish, with many of these genes having been obtained using an homology cloning approach. This review considers how the IL-1β gene has changed through vertebrate evolution and whether its role and regulation are conserved within selected non-mammalian vertebrates.  相似文献   

3.
Invertebrate and fish cytokines   总被引:3,自引:0,他引:3  
Cytokine-like molecules are well described in invertebrates, although most recent studies have revealed that there is analogy, rather than homology, between invertebrate and vertebrate cytokine-like activities. Cytokines certainly appeared early in the evolution of vertebrates, dating back some 400 millions years. Here, evidence will be reviewed and updated of the presence of these molecules in jawed fish and in particular, in bony fish, which represent the oldest group displaying true functionality of immune system as known in modern vertebrates. Many studies during the last ten years have confirmed the presence of functional homologues of mammalian cytokines in fish. In this review, particular attention will be focussed on IL-1beta, a very ancient defence cytokine recently sequenced in two species, rainbow trout (Oncorhynchus mykiss) and carp (Cyprinus carpio). Original data on the partial peptide sequence of IL-1beta in the mediterranean sea bass Dicentrarchus labrax are also presented.  相似文献   

4.
Ampullary organ electroreceptors excited by weak cathodal electric fields are used for hunting by both cartilaginous and non-teleost bony fishes. Despite similarities of neurophysiology and innervation, their embryonic origins remain controversial: bony fish ampullary organs are derived from lateral line placodes, whereas a neural crest origin has been proposed for cartilaginous fish electroreceptors. This calls into question the homology of electroreceptors and ampullary organs in the two lineages of jawed vertebrates. Here, we test the hypothesis that lateral line placodes form electroreceptors in cartilaginous fishes by undertaking the first long-term in vivo fate-mapping study in any cartilaginous fish. Using DiI tracing for up to 70 days in the little skate, Leucoraja erinacea, we show that lateral line placodes form both ampullary electroreceptors and mechanosensory neuromasts. These data confirm the homology of electroreceptors and ampullary organs in cartilaginous and non-teleost bony fishes, and indicate that jawed vertebrates primitively possessed a lateral line placode-derived system of electrosensory ampullary organs and mechanosensory neuromasts.  相似文献   

5.
6.
7.
8.
The genomes of several vertebrates, including six mammals, the chicken, Xenopus and four ray-finned fishes have been sequenced or are currently being sequenced to provide a better understanding of the human genome through comparative analysis. However, this list does not include cartilaginous fishes, which are the most basal living jawed vertebrates [1]. The genomes of the current ‘popular’ cartilaginous fishes such as the nurse shark, dogfish, and horn shark are larger than the human genome (∼3800 Mb to 7000 Mb) [2], and are not attractive for whole-genome sequencing. Here, we report the characterization of the relatively small genome (1200 Mb) of a cartilaginous fish, the elephant fish (Callorhinchus milii), and propose it as a model for whole-genome sequencing.  相似文献   

9.
10.
11.
Cartilaginous fish are the oldest extant jawed vertebrates and the oldest line to have placentae. Their pivotal evolutionary position makes them attractive models to investigate the mechanisms involved in the maternal-fetal interaction. This study describes the tissue expression of the cytokine interlukin-1 (IL-1) α, IL-1 β and its specific membrane receptor, IL-1 receptor type I (IL-1R tI) in a placental cartilaginous fish, the smoothhound shark, Mustelus canis. The presence of this cytokine has been reported in many mammalian placentae, as well as in the placenta of a squamate reptile and this study extends these observations to the cartilaginous fishes. The uteroplacental complex in M. canis consists of a yolk sac modified into a functional yolk sac placenta and complimentary uterine attachment sites. Immunohistochemistry for IL-1 α, IL-1 β and the receptor reveals leucocytes of both the mother and fetus to be positive, as well as the apical aspect of paraplacental cells and the apical vesicles in the umbilical cord epithelium. Yolk sac endoderm is also positive with all the stains while the ectoderm is positive only for IL-1 α. Immunoreactivity in the uterine epithelium was obtained for IL-1 α and the receptor. The egg envelope is always negative.  相似文献   

12.
13.
14.
15.
16.
Wang HJ  Xiang LX  Shao JZ  Jia S 《Cytokine》2006,35(3-4):126-134
Interleukin-21 (IL-21) is an important immune cytokine that was well characterized in human and mammals, but little is known in fish. In present study, an IL-21 homologue was cloned and well characterized from Tetraodon nigroviridis. The full-length Tetraodon IL-21 cDNA was 849bp in size, containing an open reading frame (ORF) of 438bp that translated a 145 amino-acid peptide, a 5' untranslated region (UTR) of 69bp, and a 3' UTR of 342bp. The deduced peptide shared identity of 20-49% with other known IL-21 sequences. The Tetraodon IL-21 gene had six exons while both human and Takifugu IL-21 gene contained only five exons. However, the level of synteny between human, Takifugu and Tetraodon genomes was well conserved during evolution. In vivo expression study showed that Tetraodon IL-21 mRNAs were constitutively expressed at a low level and only in limited tissues, including gut, gill and gonad in healthy fish, and stimulation with LPS increased the expression of IL-21 in these tissues and induced the expression of IL-21 in kidney, spleen and skin, indicating that IL-21 is an inflammatory stress inducible gene associated with the anti-bacterial defense in fish. Our study provided further evidence for the existence of IL-21 in fish, and gained further insight into the immunological functions of IL-21 gene in fish.  相似文献   

17.

Background  

The chondrichthyan or cartilaginous fish (chimeras, sharks, skates and rays) occupy an important phylogenetic position as the sister group to all other jawed vertebrates and as an early lineage to diverge from the vertebrate lineage following two whole genome duplication events in vertebrate evolution. There have been few comparative genomic analyses incorporating data from chondrichthyan fish and none comparing genomic information from within the group. We have sequenced the complete Hoxa cluster of the Little Skate (Leucoraja erinacea) and compared to the published Hoxa cluster of the Horn Shark (Heterodontus francisci) and to available data from the Elephant Shark (Callorhinchus milii) genome project.  相似文献   

18.
19.
20.
Predicting the occurrence of keystone top predators in a multispecies marine environment, such as the Mediterranean Sea, can be of considerable value to the long-term sustainable development of the fishing industry and to the protection of biodiversity. We analysed fisheries independent scientific bottom trawl survey data of two of the most abundant cartilaginous fish species (Scyliorhinus canicula, Raja clavata) in the Aegean Sea covering an 11-year sampling period. The current findings revealed a declining trend in R. clavata and S. canicula abundance from the late '90 s until 2004. Habitats with the higher probability of finding cartilaginous fish present were those located in intermediate waters (depth: 200-400 m). The present results also indicated a preferential species' clustering in specific geographic and bathymetric regions of the Aegean Sea. Depth appeared to be one of the key determining factors for the selection of habitats for all species examined. With cartilaginous fish species being among the more biologically sensitive fish species taken in European marine fisheries, our findings, which are based on a standardized scientific survey, can contribute to the rational exploitation and management of their stocks by providing important information on temporal abundance trends and habitat preferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号