首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of stress factors (changes in oxygen content, temperature, and illumination) on superoxide dismutase (SOD) and catalase activity, as well as on the content of thiol and disulfide groups in low-molecular-weight compounds and proteins of Neurospora crassa mycelium was studied in the wild type strain and white collar-1 (wc-1) and white collar-2 (wc-2) mutants. Environmental stress factors induced the activation of both SOD and catalase, as well as an increase in the thiol level in the wild type strain of Neurospora crassa. In the wc-1 and wc-2 mutants, an increase in catalase activity and in the total thiol level was revealed; however, activation of superoxide dismutase was not observed. A decrease in the formation of disulfide bonds in the proteins of wc-1 and wc-2 mutants (as compared with the wild type strain) was recorded. These results indicate disrupted transduction in the WCC mutants of stress factor signals that promote ROS (reactive oxygen species) formation.  相似文献   

2.
Guest is a transposable element of the Tc1/mariner superfamily with 30-40bp terminal inverted repeats and a TA dinucleotide target site duplication. Guest was originally discovered in the St. Lawrence 74A laboratory strain of the filamentous fungus Neurospora crassa. In this report, Guest iterations subcloned from a cosmid library of the Oakridge 74A strain were used to design PCR primers that permitted the detection of Guest in wild isolates of N. crassa. Guest is present in N. crassa as multiple copies ranging between 100bp and 2.4kb and is present in the mating type locus of several Neurospora species. Bioinformatic analysis of the entire N. crassa genome (Oakridge 74A strain) detected 48 Guest iterations. All iterations appeared to have been inactivated either by repeat-induced point mutation or sequence deletion, with the majority being remnants less than 400bp in length. The possible involvement of Guest in the evolution of the variable region that flanks the mating type idiomorphs in several Neurospora species is discussed.  相似文献   

3.
Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice ( Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants ( phs ). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β -cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso / phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice.  相似文献   

4.
Fungal plant pathogens have evolved diverse strategies to overcome the multilayered plant defence responses that confront them upon host invasion. Here we show that pathogenicity of the cucumber anthracnose fungus, Colletotrichum lagenarium, and the rice blast fungus, Magnaporthe grisea, requires a gene orthologous to Saccharomyces cerevisiae SSD1, a regulator of cell wall assembly. Screening for C. lagenarium insertional mutants deficient in pathogenicity led to the identification of ClaSSD1. Following targeted gene replacement, appressoria of classd1 mutants retained the potential for penetration but were unable to penetrate into host epidermal cells. Transmission electron microscopy suggested that appressorial penetration by classd1 mutants was restricted by plant cell wall-associated defence responses, which were observed less frequently with the wild-type strain. Interestingly, on non-host onion epidermis classd1 mutants induced papilla formation faster and more abundantly than the wild type. Similarly, colonization of rice leaves by M. grisea was severely reduced after deletion of the orthologous MgSSD1 gene and attempted infection by the mutants was accompanied by the accumulation of reactive oxygen species within the host cell. These results suggest that appropriate assembly of the fungal cell wall as regulated by SSD1 allows these pathogens to establish infection by avoiding the induction of host defence responses.  相似文献   

5.
The PsaE protein is located at the reducing side of photosystem I (PSI) and is involved in docking the soluble electron acceptors, particularly ferredoxin. However, deletion of the psaE gene in the cyanobacterium Synechocystis sp. strain PCC 6803 inhibited neither photoautotrophic growth, nor in vivo linear and cyclic electron flows. Using photoacoustic spectroscopy, we detected an oxygen-dependent, PSI-mediated energy storage activity in the DeltapsaE null mutant, which was not present in the wild type (WT). The expression of the genes encoding catalase (katG) and iron superoxide dismutase (sodB) was upregulated in the DeltapsaE mutant, and the increase in katG expression was correlated with an increase in catalase activity of the cells. When catalases were inhibited by sodium azide, the production of reactive oxygen species was enhanced in DeltapsaE relative to WT. Moreover, sodium azide strongly impaired photoautotrophic growth of the DeltapsaE mutant cells while WT was much less sensitive to this inhibitor. The katG gene was deleted in the DeltapsaE mutant, and the resulting double mutant was more photosensitive than the single mutants, showing cell bleaching and lipid peroxidation in high light. Our results show that the presence of the PsaE polypeptide at the reducing side of PSI has a function in avoidance of electron leakage to oxygen in the light (Mehler reaction) and the resulting formation of toxic oxygen species. PsaE-deficient Synechocystis cells can counteract the chronic photoreduction of oxygen by increasing their capacity to detoxify reactive oxygen species.  相似文献   

6.
7.
The fungus Alternaria alternata is a common spot‐producing plant pathogen. During the past decade, tobacco brown spot disease caused by this fungus has became prevalent in China and lead to significant losses. To better understand the molecular pathogenesis of this fungus, the aapk1 gene encoding a cAMP‐dependent protein kinase catalytic subunit was cloned, sequenced and characterized. The aapk1 deletion mutants were identified from hygromycin‐resistant transformants by PCR strategy and confirmed by Southern blot analysis and RT‐PCR. The aapk1 deletion mutant exhibited reduced vegetative growth and was less toxic than the wild‐type strain sd1. Deletion of aapk1 also delayed disease development on detached tobacco leaves. Thus, we propose that the cAMP signalling pathway is involved in mycelia growth and pathogenic phenotype of Alternaria alternata.  相似文献   

8.
Zhang HK  Zhang X  Mao BZ  Li Q  He ZH 《Cell research》2004,14(1):27-33
Alpha-picolinic acid (PA), a metabolite of tryptophan and an inducer of apoptosis in the animal cell, has been reported to be a toxin produced by some of plant fungal pathogens and used in screening for disease resistant mutants. Here, we report that PA is an efficient apoptosis agent triggering cell death of hypersensitive-like response in planta. Confirmed by Fluorescence Activated Cell Sorter (FACS), rice suspension cells and leaves exhibited programmed cell death induced by PA. The PA-induced cell death was associated with the accumulation of reactive oxygen species that could be blocked by diphenylene iodonium chloride, indicating that the generation of reactive oxygen species was NADPHoxidase dependent. We also demonstrated the induction of rice defense-related genes and subsequent resistant enhancement by PA against the rice blast fungus Magnaporthe grisea. Hence, it was concluded that the PA-stimulated defense response likely involves the onset of the hypersensitive response in rice, which also provides a simple eliciting tool for studying apoptosis in the plant cell.  相似文献   

9.
Cadmium is a widespread pollutant that has been associated with oxidative stress, but the mechanism behind this effect in prokaryotes is still unclear. In this work, we exposed two glutathione deficient mutants (ΔgshA and ΔgshB) and one respiration deficient mutant (ΔubiE) to a sublethal concentration of cadmium. The glutathione mutants show a similar increase in reactive oxygen species as the wild type. Experiments performed using the ΔubiE strain showed that this mutant is more resistant to cadmium ions and that Cd-induced reactive oxygen species levels were not altered. In the light of these facts, we conclude that the interference of cadmium with the respiratory chain is the cause of the oxidative stress induced by this metal and that, contrary to previously proposed models, the reactive oxygen species increase is not due to glutathione depletion, although this peptide is crucial for cadmium detoxification.  相似文献   

10.
We have examined the distribution of MYOA, the class I myosin protein of the filamentous fungus Aspergillus nidulans, as a GFP fusion protein. Wild type GFP-MYOA expressed from the myoA promoter is able to rescue a conditional myoA null mutant. Growth of a strain expressing GFP-MYOA as the only class I myosin was approximately 50% that of a control strain, demonstrating that the fusion protein retains substantial myosin function. The distribution of the wild type GFP-MYOA fusion is enriched in growing hyphal tips and at sites of septum formation. In addition, we find that GFP-MYOA is also found in patches at the cell cortex. We have also investigated the effects of deletion or truncation mutations in the tail domain on MYOA localization. Mutant GFP-MYOA fusions that lacked either the C-terminal SH3 or a portion of the C-terminal proline-rich domain had subcellular distributions like wild type MYOA, consistent with their ability to complement a myoA null mutant. In contrast, mutants lacking all of the C-terminal proline-rich domain or the TH-1-like domain were mainly localized diffusely throughout the cytoplasm, but could less frequently be found in patches, and were unable to complement a myoA null mutant. The GFP-MYOA DeltaIQ mutant was localized into large bright fluorescent patches in the cytoplasm. This mutant protein was subsequently found to be insoluble.  相似文献   

11.
Mitochondria are a main providers of high levels of energy, but also a major source of reactive oxygen species (ROS) during normal oxidative metabolism. The involvement of Neurospora crassa alternative NAD(P)H dehydrogenases in mitochondrial ROS production was evaluated. The growth responses of a series of respiratory mutants to several stress conditions revealed that disrupting alternative dehydrogenases leads to an increased tolerance to the redox cycler paraquat, with a mutant devoid of the external NDE1 and NDE2 enzymes being significantly more resistant. The nde1nde2 mutant mitochondria show a significant decrease in ROS generation in the presence and absence of paraquat, regardless of the respiratory substrate used, and an intrinsic increase in catalase activity. Analysis of ROS production by a complex I mutant (nuo51) indicates that, as in other organisms, paraquat-derived ROS in Neurospora mitochondria occur mainly at the level of complex I. We propose that disruption of the external NAD(P)H dehydrogenases NDE1 and NDE2 leads to a synergistic effect diminishing ROS generation by the mitochondrial respiratory chain. This, in addition to a robust increase in scavenging capacity, provides the mutant strain with an improved ability to withstand paraquat treatment.  相似文献   

12.
Ergothioneine (EGT) is a histidine derivative with sulfur on the imidazole ring and a trimethylated amine; it is postulated to have an antioxidant function. Although EGT apparently is only produced by fungi and some prokaryotes, it is acquired by animals and plants from the environment, and is concentrated in animal tissues in cells with an EGT transporter. Monobromobimane derivatives of EGT allowed conclusive identification of EGT by LC/MS and the quantification of EGT in Colletotrichum graminicola and Neurospora crassa conidia and mycelia. EGT concentrations were significantly (α=0.05) higher in conidia than in mycelia, with approximately 17X and 5X more in C. graminicola and N. crassa, respectively. The first EGT biosynthetic gene in a fungus was identified by quantifying EGT in N. crassa wild type and knockouts in putative homologs of actinomycete EGT biosynthetic genes. NcΔEgt-1, a strain with a knockout in gene NCU04343, does not produce EGT, in contrast to the wild type. To determine the effects of EGT in vivo, we compared NcΔEgt-1 to the wild type. NcΔEgt-1 is not pleiotropically affected in rate of hyphal elongation in Vogel's medium either with or without ammonium nitrate and in the rate of germination of macroconidia on Vogel's medium. The superoxide-producer menadione had indistinguishable effects on conidial germination between the two strains. Cupric sulfate also had indistinguishable effects on conidial germination and on hyphal growth between the two strains. In contrast, germination of NcΔEgt-1 conidia was significantly more sensitive to tert-butyl hydroperoxide than the wild type; germination of 50% (GI(50)) of the NcΔEgt-1 conidia was prevented at 2.7 mM tert-butyl hydroperoxide whereas the GI(50) for the wild type was 4.7 mM tert-butyl hydroperoxide, or at a 1.7X greater concentration. In the presence of tert-butyl hydroperoxide and the fluorescent reactive oxygen species indicator 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, significantly (P=0.0002) more NcΔEgt-1 conidia fluoresced than wild type conidia, indicating that EGT quenched peroxides in vivo. While five to 21-day-old conidia of both strains germinated 100%, NcΔEgt-1 conidia had significantly (P<0.001) diminished longevity. Linear regression analysis indicates that germination of the wild type declined to 50% in 35 days, in comparison to 25 days for the NcΔEgt-1, which is equivalent to a 29% reduction in conidial life span in the NcEgt-1 deletion strain. Consequently, the data indicate that endogenous EGT helps protect conidia during the quiescent period between conidiogenesis and germination, and that EGT helps protect conidia during the germination process from the toxicity of peroxide but not from superoxide or Cu(2+). Based on an in silico analysis, we postulate that NcEgt-1 was acquired early in the mycota lineage as a fusion of two adjacent prokaryotic genes, that was then lost in the Saccharomycotina, and that NcEgt-1 catalyzes the first two steps of EGT biosynthesis from histidine to hercynine to hercynylcysteine sulfoxide.  相似文献   

13.
14.
Fungi are capable of potentially unlimited growth. We resolved nuclear types from multinuclear mycelium of a phenotypically normal wild isolate of the fungus Neurospora intermedia by plating its uninucleate microconidia and obtained a strain which, unlike the "parent" strain, exhibited clonal senescence in subcultures. The mutant gene, senescent, was introgressed into N. crassa and mapped four map units to the right of the his-1 locus on linkage group VR. senescent is the first nuclear gene mutant of Neurospora derived from nature that shows the death phenotype. Death of the sen mutant occurred faster at 34 degrees C than at 22 or 26 degrees C. Measurements of oxygen uptake of conidia using respiratory inhibitors and the spectrophotometric analyses of mitochondrial cytochromes showed that in sen cultures grown at 34 degrees C, cytochromes b and aa(3) were present but cytochrome c was absent. By contrast at 26 degrees C, cytochromes b and c were present but cytochrome aa(3) was diminished in the late subcultures. This suggested that the sen mutation does not affect the potential to produce functional cytochromes. The deficiency of the respiratory chain cytochromes may not be the cause of death of the sen mutant because the cytochrome c and aa(3) mutants of N. crassa are capable of sustained growth whereas sen is not. Possible explanations for the observations are discussed.  相似文献   

15.
粗糙脉孢菌纤维素酶液体发酵优良形态突变体筛选   总被引:1,自引:0,他引:1  
丝状真菌被广泛地用于包括纤维素酶在内的工业酶生产过程。在液体深层发酵中,丝状真菌菌丝形态直接影响发酵液的流变特性,进而与目标酶蛋白产量存在着重要的关联。目前,针对丝状真菌工业酶液体发酵菌丝形态的研究依然是从传统的发酵工程学角度出发,对与发酵水平紧密相关的形态、粘度等性状相关基因的认识远远不够。为了挖掘深层发酵中对丝状真菌发酵产酶性能具有重要影响的形态发育相关基因,以粗糙脉孢菌Neurospora crassa单基因突变体库中的95株形态突变株为研究对象,在结晶纤维素为碳源的条件下进行筛选,探寻与野生型菌株蛋白产量有显著差异的突变株。同时,对这些突变株的内切-β-1,4-葡聚糖酶酶活、β-葡萄糖苷酶酶活、发酵液粘度和菌丝干重进行了测定,并观察了发酵液中突变株的菌丝形态。实验结果表明,与野生型菌株相比,突变株SZY32、SZY35、SZY39和SZY43发酵液中蛋白浓度显著降低,突变株SZY11、SZY63、SZY69和SZY87发酵液中蛋白浓度显著性提高。值得注意的是,突变株SZY11和SZY43发酵液菌丝体主要形态为菌球状,其发酵液粘度分别降低75%和50%,突变株SZY87在发酵液中呈长丝状,发酵液粘度显著升高至少2倍。这些与产酶水平相关的形态、粘度基因的获得将有助于丝状真菌纤维素酶等工业酶高产工程菌株的理性构建。  相似文献   

16.
A cobalt-resistant strain of Neurospora crassa (cor) was obtained by repeated subculturing of the wild type on cobalt-containing agar medium. N. crassa cor is twentyfold more resistant to cobalt ions compared with the wild type. Resistance was stable on repeated subculturing of cor on cobalt-free media. N. crassa cor is also cross-resistant to nickel (fourfold), but not to zinc or copper. Higher concentrations of iron and magnesium ions are required to reverse growth inhibition due to cobalt toxicity in N. crassa cor, compared with the wild type. Germinating conidia and mycelia of the cor strain accumulated lower levels of cobalt ions compared with the parent N. crassa. The partial transport block for cobalt uptake is shown to be primarily due to decreased surface binding of cobalt to mycelia and cell walls. Efflux of mycelial cobalt was also observed in wild type and cobalt-resistant N. crassa. The characteristics of cor in comparison with wild type N. crassa are discussed in relation to the mechanisms of cobalt resistance.  相似文献   

17.
Du L  Yu Y  Li Z  Chen J  Liu Y  Xia Y  Liu X 《Biochemistry. Biokhimii?a》2007,72(8):843-847
Evidence is presented that Tim18, a mitochondria translocase, plays a role in the previously described apoptosis induced by arsenite in Saccharomyces cerevisiae. Tim18 deletion mutant exhibited resistance to arsenite. After arsenite treatment, both the wild type and Tim18-deficient cells showed reactive oxygen species (ROS) production. Arsenite induced the higher expression of tim18 in wild type yeast cells. We found that the tim18 deletion mutant also exhibited resistance to other apoptotic stresses such as acetic acid, H2O2, and hyperosmotic stress. These results suggest that Tim18 is important for yeast cell death induced by arsenic, and it may act downstream of ROS production.  相似文献   

18.
We performed a screening of hydroxyurea (HU)-sensitive mutants using a single-gene-deletion mutant collection in Escherichia coli. HU inhibits ribonucleotide reductase (RNR), which leads to arrest of the replication fork. Surprisingly, the wild-type was less resistant to HU than the average for the Keio Collection. Respiration-defective mutants were significantly more resistant to HU, suggesting that the generation of reactive oxygen species (ROS) contributes to cell death. High-throughput screening revealed that 15 mutants were completely sensitive on plates containing 7.5 mM HU. Unexpectedly, translation-related mutants based on COG categorization were the most enriched, and three of them were deletion mutants of nonessential ribosomal proteins (L1, L32, and L36). We found that, in these mutants, an increased membrane stress response was provoked, resulting in increased ROS generation. The addition of OH radical scavenger thiourea rescued the HU sensitivity of these mutants, suggesting that ROS generation is the direct cause of cell death. Conversely, both the deletion of rpsF and the deletion of rimK, which encode S6 and S6 modification enzymes, respectively, showed an HU-resistant phenotype. These mutants increased the copy number of the p15A-based plasmid and exhibited reduced basal levels of SOS response. The data suggest that nonessential proteins indirectly affect the DNA-damaging process.  相似文献   

19.
The existence of specific respiratory supercomplexes in mitochondria of most organisms has gained much momentum. However, its functional significance is still poorly understood. The availability of many deletion mutants in complex I (NADH:ubiquinone oxidoreductase) of Neurospora crassa, distinctly affected in the assembly process, offers unique opportunities to analyze the biogenesis of respiratory supercomplexes. Herein, we describe the role of complex I in assembly of respiratory complexes and supercomplexes as suggested by blue and colorless native polyacrylamide gel electrophoresis and mass spectrometry analyses of mildly solubilized mitochondria from the wild type and eight deletion mutants. As an important refinement of the fungal respirasome model, we found that the standard respiratory chain of N. crassa comprises putative complex I dimers in addition to I-III-IV and III-IV supercomplexes. Three Neurospora mutants able to assemble a complete complex I, lacking only the disrupted subunit, have respiratory supercomplexes, in particular I-III-IV supercomplexes and complex I dimers, like the wild-type strain. Furthermore, we were able to detect the I-III-IV supercomplexes in the nuo51 mutant with no overall enzymatic activity, representing the first example of inactive respirasomes. In addition, III-IV supercomplexes were also present in strains lacking an assembled complex I, namely, in four membrane arm subunit mutants as well as in the peripheral arm nuo30.4 mutant. In membrane arm mutants, high-molecular-mass species of the 30.4-kDa peripheral arm subunit comigrating with III-IV supercomplexes and/or the prohibitin complex were detected. The data presented herein suggest that the biogenesis of complex I is linked with its assembly into supercomplexes.  相似文献   

20.
The conserved arginine 274 and histidine 224 and 228 residues in subunit NuoCD of complex I from Escherichia coli were substituted for alanine. The wild-type and mutated NuoCD subunit was expressed on a plasmid in an E. coli strain bearing a nuoCD deletion. Complex I was fully expressed in the H224A and H228A mutants, whereas the R274A mutation yielded approximately 50% expression. Ubiquinone reductase activity of complex I was studied in membranes and with purified enzyme and was 50% and 30% of the wild-type activity in the H224A and H228A mutants, respectively. The activity of R274A was less than 5% of the wild type in membranes but 20% in purified complex I. Rolliniastatin inhibited quinone reductase activity in the mutants with similar affinity as in the wild type, indicating that the quinone-binding site was not significantly altered by the mutations. Ubiquinone-dependent superoxide production by complex I was similar to the wild type in the R274A mutant but slightly higher in the H224A and H228A mutants. The EPR spectra of purified complex I from the H224A and H228A mutants did not differ from the wild type. In contrast, the signals of the N2 cluster and another fast-relaxing [4Fe-4S] cluster, tentatively assigned as N6b, were drastically decreased in the NADH-reduced R274A mutant enzyme but reappeared on further reduction with dithionite. These findings show that the redox potential of the N2 and N6b centers is shifted to more negative values by the R274A mutation. Purified complex I was reconstituted into liposomes, and electric potential was generated across the membrane upon NADH addition in all three mutant enzymes, suggesting that none of the mutations directly affect the proton-pumping machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号