首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
N V Kumar  G Govil 《Biopolymers》1984,23(10):2009-2024
Stacking of aromatic amino acids tryptophan (Trp), tyrosine (Tyr), phenylalanine (Phe), and histidine (His) with bases and base pairs of nucleic acids has been studied. Stacking energies of the amino acid–base (or base pair) complexes have been calculated by second-order perturbation theory. Our results show that, in general, the predominant contribution to the total stacking energy comes from the dispersion terms. In these cases, repulsion energy is greater than the sum of electrostatic and polarization energies. In contrast to this, interaction of histidine with the bases and base pairs is largely Coulombic in nature. The complexes of guanine with aromatic amino acids are more stable than the corresponding complexes of adenine. Among pyrimidines, cytosine forms the most stable complexes with the aromatic amino acids. The G · C base pair has the highest affinity with aromatic amino acids among various sets of base pairs. Optimized geometries of the stacked complexes show that the aromatic moieties overlap only partially. The heteroatom of one residue generally overlaps with the other aromatic moiety. There is a considerable degree of configurational freedom in the stacked geometries. The role of stacking in specific recognition of base sequences by proteins is discussed.  相似文献   

2.
A comprehensive review of recent theoretical and experimental advances in the singlet electronic transitions, excited state structures and dynamics of nucleic acid bases (NABs) and base assemblies are presented. It is well known that NABs absorb ultraviolet radiation, but the absorbed energy is efficiently dissipated in the form of ultrafast internal conversion processes believed to occur in the subpicosecond time scale and, therefore, enabling NABs highly photostable. It is not known how much evolutionary role was played in evolving these molecules and the ultimate selection by nature as genetic materials, but it is well accepted that survival-of-fittest prevails. Recently, significant efforts have been continuously paid to understand the mechanism of electronic excitation deactivation, but universally acceptable mechanism is still elusive. However, recent investigations reveal that electronic excited state geometries of DNA bases are usually nonplanar and this structural nonplanarity may facilitate nonradiative deactivation. Investigation of excited state structures is challenging and, therefore, it is not surprising that despite the impressive theoretical and computational advances, this research area is still hampered by the methodological and computational limitations. Further, stacking has significant influence on the emission properties of molecules. The 2-aminopurine, a fluorescent adenine derivative frequently used in studying DNA dynamics, shows significant attenuations in fluorescence quantum yield when incorporated in the DNA. Theoretical and computational bottlenecks limit a thorough theoretical understanding of effect of stacking interactions on the excited state dynamics of NABs. Despite these limitations the investigations of excited state properties are progressing in the right direction and our better understanding of excited state structure and dynamics of NABs and nucleic acids may help to design preventive strategy for radiation induced illness and photostable materials.  相似文献   

3.
Metal-ion and sequence dependent changes in the stacking interactions of bases surrounding abasic (AB) sites in 10 different DNA duplexes were examined by incorporating the fluorescent nucleotide probe 2-aminopurine (2-AP), opposite to the site (AB-APopp) or adjacent to the site (AB-APadj) on either strand. A detailed study of the fluorescence emission and excitation spectra of these AB duplexes and their corresponding parent duplexes indicates that AB-APoppis significantly less stacked than 2-AP in the corresponding normal duplex. In general, AB-APadjon the AB strand is stacked, but AB-APadjon the opposite strand shows destabilized stacking interactions. The results also indicate that divalent cation binding to the AB duplexes contributes to destabilizaton of the base stacking interactions of AB-APopp, but has little or no effect on the stacking interactions of AB-APadj. Consistent with these results, the fluorescence of AB-APoppis 18-30-fold more sensitive to an externally added quenching agent than the parent normal duplex. When uracil DNA glycosylase binds to AB-APoppin the presence of 2.5 mM MgCl2, a 3-fold decrease in fluorescence is observed ( K d = 400 +/- 90 nM) indicating that the unstacked 2-APoppbecomes more stacked upon binding. On the basis of these fluorescence studies a model for the local base stacking interactions at these AB sites is proposed.  相似文献   

4.
DNA base flipping, which was first observed for the C5-cytosine DNA methyltransferase M. Hha I, results in a complete removal of the stacking interactions between the target base and its neighbouring bases. We have investigated whether duplex oligodeoxynucleotides containing the fluorescent base analogue 2-aminopurine can be used to sense DNA base flipping. Using M. Hha I as a paradigm for a base flipping enzyme, we find that the fluorescence intensity of duplex oligodeoxynucleotides containing 2-aminopurine at the target site is dramatically enhanced (54-fold) in the presence of M. Hha I. Duplex oligodeoxynucleotides containing 2-aminopurine adjacent to the target cytosine show little fluorescence increase upon addition of M. Hha I. These results clearly demonstrate that duplex oligodeoxynucleotides containing 2-aminopurine at the target site can serve as fluorescence probes for base flipping. Another enzyme hypothesized to use a base flipping mechanism is the N6-adenine DNA methyltransferase M. Taq I. Addition of M. Taq I to duplex oligodeoxynucleotides bearing 2-aminopurine at the target position, also results in a strongly enhanced fluorescence (13-fold), whereas addition to duplex oligodeoxynucleotides containing 2-aminopurine at the 3'- or 5'-neighbouring position leads only to small fluorescence increases. These results give the first experimental evidence that the adenine-specific DNA methyltransferase M. Taq I also flips its target base.  相似文献   

5.
Time-resolved fluorescence decay of a single-stranded DNA decamer d(CTGAAT5CAG), where d5 is the fluorescent base 1-(beta-D-2'-deoxyribosyl)-5-methyl-2-pyrimidinone, was measured and analyzed at several temperatures. The d5 base in the decamer is resolved into three states according to their fluorescence decay lifetime characteristics and temperature dependence of their associated amplitudes: fully extended and completely unstacked state, loosely associated state, and fully stacked state. These states are in slow exchange compared to their fluorescence decay rates. The population of the fully extended and completely unstacked state is small and decreases further with increasing temperature. The loosely associated state, whose fluorescence can still be efficiently quenched by other DNA bases, occupies a large portion of the conventionally defined unstacked state. Stacking enthalpy and entropy for the d5 base with thymine or cytosine bases in the DNA decamer are calculated to be -6.6 kcal/mol and -22 cal/mol.K, respectively. This work shows that fluorescent bases in DNA can be useful to the study of local conformations of bases.  相似文献   

6.
The binding of oligopeptides of general structure Lys-X-Lys (where X is an aromatic residue) to several polynucleotides has been studied by fluorescence spectroscopy. Two types of complexes are formed, both involving electrostatic interactions between lysyl residues and phosphate groups as shown by the ionic strength and pH dependence of binding. The fluorescence quantum yield of the first complex is identical with that of the free peptide. The other complex involves a stacking of the nucleic acid bases with the aromatic amino acid whose fluorescence is quenched. Fluorescence data have been quantitatively analyzed according to a model involving these two types of complexes. Association constants and the size of binding sites have been determined. Stacking interactions are favored in single-stranded polynucleotides as compared to double-stranded ones. A short oligopeptide such as Lys-X-Lys is thus able to distinguish between single-stranded and double-stranded nucleic acids. Fluorescence results are compared to those obtained by proton magnetic resonance and circular dichroism.  相似文献   

7.
Abasic sites are highly mutagenic lesions in DNA that arise as intermediates in the excision repair of modified bases. These sites are generated by the action of damage-specific DNA glycosylases and are converted into downstream intermediates by the specific activity of apurinic/apyrimidinic endonucleases. Enzymes in both families have been observed in crystal structures to impose deformations on the abasic-site DNA, including DNA kinking and base flipping. On the basis of these apparent protein-induced deformations, we propose that altered conformation and dynamics of abasic sites may contribute to the specificity of these repair enzymes. Previously, measurements of the steady-state fluorescence of the adenine analogue 2-aminopurine (2AP) opposite an abasic site demonstrated that binding of divalent cations could induce a conformational change that increased the accessibility of 2AP to solute quenching [Stivers, J. T. (1998) Nucleic Acids Res. 26, 3837-44]. We have performed time-resolved fluorescence experiments to characterize the states involved in this conformational change. Interpretation of these studies is based on a recently developed model attributing the static and dynamic fluorescence quenching of 2AP in DNA to aromatic stacking and collisional interactions with neighboring bases, respectively (see the preceding paper in this issue). The time-resolved fluorescence results indicate that divalent cation binding shifts the equilibrium of the abasic site between two conformations: a "closed" state, characterized by short average fluorescence lifetime and complex decay kinetics, and an "open" state, characterized by monoexponential decay with lifetime approximately that of the free nucleoside. Because the lifetime and intensity decay kinetics of 2AP incorporated into DNA are sensitive primarily to collisional interactions with the neighboring bases, the absence of dynamic quenching in the open state strongly suggests that the fluorescent base is extrahelical in this conformation. Consistent with this interpretation, time-resolved quenching studies reveal that the open state is accessible to solute quenching by potassium iodide, but the closed state is not. Greater static quenching is observed in the abasic site when the fluorescent base is flanked by 5'- and 3'-thymines than in the context of 5'- and 3'-adenines, indicating that 2AP is more stacked with the neighboring bases in the former sequence. These results imply that the conformation of the abasic site varies in a sequence-dependent manner. Undamaged sequences in which the abasic site is replaced by thymine do not exhibit an open state and have different levels of both static and dynamic quenching than their damaged homologues. These differences in structure and dynamics may be significant determinants of the high specific affinity of repair enzymes for the abasic site.  相似文献   

8.
Jean JM  Hall KB 《Biochemistry》2004,43(31):10277-10284
The structure and dynamics of DNA trimers are experimentally assessed using the fluorescent purine analogue 2-aminopurine (2AP), incorporating 2AP between purine and pyrimidine bases to form 5'dXp2APpY3' molecules. Circular dichroism and fluorescence quenching of the 2AP show that the bases are stacked; at the same time, fluorescence decay lifetimes are heterogeneous, indicative of conformational sampling. 2AP does not exhibit the long fluorescence decay time characteristic of the free nucleoside, suggesting that its motions in the trimers bring it into proximity of the neighboring bases, resulting in efficient charge transfer and average fluorescence lifetimes on the order of 1-2 ns.  相似文献   

9.
Abstract

Ab initio quantum-chemical calculations with inclusion of electron correlation made since 1994 (such reliable calculations were not feasible before) significantly modified our view on interactions of nucleic acid bases. These calculations allowed to perform the first reliable comparison of the strength of stacked and hydrogen bonded pairs of nucleic acid bases, and to characterize the nature of the base-base interactions. Although hydrogen-bonded complexes of nucleobases are primarily stabilized by the electrostatic interaction, the dispersion attraction is also important. The stacked pairs are stabilized by dispersion attraction, however, the mutual orientation of stacked bases is determined rather by the electrostatic energy. Some popular theories of stacking were ruled out: The theory based on attractive interactions of polar exocyclic groups of bases with delocalized electrons of the aromatic rings (Bugg et al., Biopolymers 10, 175 (1971).), and the II-II interactions model (C.A. Hunter, J. Mol. Biol. 230, 1025 (1993)). The calculations demonstrated that amino groups of nucleobases are very flexible and intrinsically nonplanar, allowing hydrogen-bond-like interactions which are oriented out of the plane of the nucleobase. Many H-bonded DNA base pairs are intrinsically nonplanar. Higher-level ab initio calculations provide a unique set of reliable and consistent data for parametrization and verification of empirical potentials. In this article, we present a short survey of the recent calculations, and discuss their significance and limitations. This summary is written for readers which are not experts in computational quantum chemistry.  相似文献   

10.
11.
The self-complementary DNA decamer duplex d(CTGAATTCAG)2 and its modified counterpart d(CTGA[2AP]TTCAG)2, where the innermost adenine (6-aminopurine) has been replaced with the fluorescent analogue 2-aminopurine (2AP), have been studied by fluorescence and NMR spectroscopy and simulated by molecular dynamics. Both decamers are recognized and cleaved by the EcoRI restriction endonuclease. 2D NMR results show that both decamers have a standard B-type conformation below 20 degrees C, though a disturbance exists to the 5' side of the 2AP site which may originate from increased local mobility. The fluorescence and fluorescence anisotropy decays of both decamers, as well as the one containing 2AP in only one chain, were studied as a function of temperature. The data show that the 2AP base exists in a temperature-dependent distribution of states and shows rapid motions, suggesting interconversion among these states on a time scale of about 10(-10) s. The integrated fluorescence of the decamer with 2AP in both chains shows a large increase around the helix melting temperature whereas the decamer with one 2AP shows only a mild increase, showing that the mixed helix has a different structural transition as sensed by the 2AP base. The data suggest a model of conformational states which have distinct fluorescence decay times. The various states may differ in the degree of base stacking. Fluctuations in the degree of stacking of the A or 2AP base are supported by molecular dynamics simulations, which additionally show that the 2AP-T or A-T base pair hydrogen bonds remain intact during these large motions.  相似文献   

12.
Liu JD  Zhao L  Xia T 《Biochemistry》2008,47(22):5962-5975
Unpaired bases at the end of an RNA duplex (dangling ends) can stabilize the core duplex in a sequence-dependent manner and are important determinants of RNA folding, recognition, and functions. Using 2-aminopurine as a dangling end purine base, we have employed femtosecond time-resolved fluorescence spectroscopy, combined with UV optical melting, to quantitatively investigate the physical and structural nature of the stacking interactions between the dangling end bases and the terminal base pairs. A 3'-dangling purine base has a large subpopulation that stacks on the guanine base of the terminal GC or UG pair, either intrastrand or cross-strand depending on the orientation of the pair, thus providing stabilization of different magnitudes. On the contrary, a 5'-dangling purine base only has a marginal subpopulation that stacks on the purine of the same strand (intrastrand) but has little cross-strand stacking. Thus a 5'-dangling purine does not provide significant stabilization. These stacking structures are not static, and a dangling end base samples a range of stacked and unstacked conformations with respect to the terminal base pair. Femtosecond time-resolved anisotropy decay reveals certain hindered base conformational dynamics that occur on the picosecond to nanosecond time scales, which allow the dangling base to sample these substates. When the dangling purine is opposite to a U and is able to form a potential base pair at the end of the duplex, there is an interplay of base stacking and hydrogen-bonding interactions that depends on the orientation of the base pair relative to the adjacent GC pair. By resolving these populations that are dynamically exchanging on fast time scales, we elucidated the correlation between dynamic conformational distributions and thermodynamic stability.  相似文献   

13.
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non‐canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte‐Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER‐parm99bsc0 and CHARMM‐36 force‐fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte‐Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson–Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non‐canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse‐grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson–Crick base pairs, as found often in the non‐coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212–226, 2016.  相似文献   

14.
To study M-DNA molecular structure (such DNA with transition metal ions placed between the nucleic bases is able to conduct the electric current) and its conductivity mechanisms, we carried out ab initio quantum-mechanical calculations of electronic and spatial structures, thermodynamic characteristics of adenine-thymine (АТ) and guanine-cytosine (GC) base pair complexes with Zn2+ and Ni2+. To take into account the influence of the alkaline environment, calculations for these complexes were also carried out with hydroxyl and two water molecules. Computations were performed at MP2 level of theory using 6–31+G* basis set. Analogous calculations were carried out for (AC)(TG) stacking dimer of nucleic acid base pairs with two Zn2+. The calculation of the interaction energy in complexes has shown the preference of locating the metal ion (instead of the imino proton) between bases in M-DNA. The electronic transition energy calculation has revealed the reduction of the first singlet transition energy in АТ and GC complexes with Ni2+ from 4.5 eV to 0.4 - 0.6 eV. Ni2+ orbitals take part in the formation of HOMO and LUMO on the complexes investigated. It was shown that charges of metal ions incorporated into complexes with nucleic bases and in dimer decrease significantly.  相似文献   

15.
Free energies for stacking of unpaired nucleotides (dangling ends) at the termini of oligoribonucleotide Watson-Crick helixes (DeltaG(0)37,stack) depend on sequence for 3' ends but are always small for 5' ends. Here, these free energies are correlated with stacking at helix termini in a database of 34 RNA structures determined by X-ray crystallography and NMR spectroscopy. Stacking involving GA pairs is considered separately. A base is categorized as stacked by its distance from (相似文献   

16.
17.
The interactions of two phenazine derivatives, one with a neutral chromophore (glycoside) and the other with a cationic one (quaternary salt), with various synthetic single- and double-stranded polynucleotides and natural DNA were studied by fluorescence techniques, conducting measurements of steady-state fluorescence intensity and polarization degree as well as fluorescence lifetime. These dyes show fluorescence quenching upon intercalation into the GC sequences of the double-stranded nucleic acids and an increase in fluorescence emission and lifetime upon incorporation into the AT and AU sequences. GC base pairs in continuous deoxynucleotide sequences were found to be preferred as binding sites for both phenazines, in contrast to AT base pairs. On the contrary, the continuous ribonucleotide GC sequence binds the phenazines more weakly than does the AU sequence. With regard to the interaction of the phenazines with single-stranded polynucleotides, a stacking interaction of the dye chromophores with the nucleic bases was observed. In that case the guanine residue quenches the cationic phenazine fluorescence, while the stacking interaction with the other bases results in an increase in the fluorescence quantum yield. Unlike the cationic dye, the fluorescence of the neutral phenazine was quenched by both purine bases.  相似文献   

18.
The fluorescent base analogue 2-aminopurine (2-AP) is commonly used to study specific conformational and protein binding events involving nucleic acids. Here, combinations of steady-state and time-resolved fluorescence spectroscopy of 2-AP were employed to monitor conformational transitions within a model hairpin RNA from diverse structural perspectives. RNA substrates adopting stable, unambiguous secondary structures were labeled with 2-AP at an unpaired base, within the loop, or inside the base-paired stem. Steady-state fluorescence was monitored as the RNA hairpins made the transitions between folded and unfolded conformations using thermal denaturation, urea titration, and cation-mediated folding. Unstructured control RNA substrates permitted the effects of higher-order RNA structures on 2-AP fluorescence to be distinguished from stimulus-dependent changes in intrinsic 2-AP photophysics and/or interactions with adjacent residues. Thermodynamic parameters describing local conformational changes were thus resolved from multiple perspectives within the model RNA hairpin. These data provided energetic bases for construction of folding mechanisms, which varied among different folding-unfolding stimuli. Time-resolved fluorescence studies further revealed that 2-AP exhibits characteristic signatures of component fluorescence lifetimes and respective fractional contributions in different RNA structural contexts. Together, these studies demonstrate localized conformational events contributing to RNA folding and unfolding that could not be observed by approaches monitoring only global structural transitions.  相似文献   

19.
The ability to accurately quantify specific nucleic acid molecules in complex biomolecule solutions in real time is important in diagnostic and basic research. Here we describe a DNA-PNA (peptide nucleic acid) hybridization assay that allows sensitive quantification of specific nucleic acids in solution and concomitant detection of select single base mutations in resulting DNA-PNA duplexes. The technique employs so-called FIT (forced intercalation) probes in which one base is replaced by a thiazole orange (TO) dye molecule. If a DNA molecule that is complementary to the FIT-PNA molecule (except at the site of the dye) hybridizes to the probe, the TO dye exhibits intense fluorescence because stacking in the duplexes enforces a coplanar arrangement even in the excited state. However, a base mismatch at either position immediately adjacent to the TO dye dramatically decreases fluorescence, presumably because the TO dye has room to undergo torsional motions that lead to rapid depletion of the excited state. Of note, we found that the use of d-ornithine rather than aminoethylglycine as the PNA backbone increases the intensity of fluorescence emitted by matched probe-target duplexes while specificity of fluorescence signaling under nonstringent conditions is also increased. The usefulness of the ornithine-containing FIT probes was demonstrated in the real-time PCR analysis providing a linear measurement range over at least seven orders of magnitude. The analysis of two important single nucleotide polymorphisms (SNPs) in the CFTR gene confirmed the ability of FIT probes to facilitate unambiguous SNP calls for genomic DNA by quantitative PCR.  相似文献   

20.
Use of the fluorescent base analogue 2-aminopurine has provided a direct demonstration of the translocation of PcrA helicase toward the 5'-end of single-stranded DNA. Single 2-aminopurine bases are introduced into otherwise standard oligonucleotides and produce a fluorescence signal when PcrA reaches their position. We demonstrate that random binding of PcrA to ssDNA is followed by translocation in an ATP-dependent manner toward the 5'-terminus at 80 bases per second at 20 degrees C. The data also provide information on the kinetics of ssDNA binding to the helicase and of the protein dissociation from the 5'-end of ssDNA. A full kinetic model is presented for ATP-dependent DNA translocation by PcrA helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号