首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pairs of helices in transmembrane (TM) proteins are often tightly packed. We present a scoring function and a computational methodology for predicting the tertiary fold of a pair of alpha-helices such that its chances of being tightly packed are maximized. Since the number of TM protein structures solved to date is small, it seems unlikely that a reliable scoring function derived statistically from the known set of TM protein structures will be available in the near future. We therefore constructed a scoring function based on the qualitative insights gained in the past two decades from the solved structures of TM and soluble proteins. In brief, we reward the formation of contacts between small amino acid residues such as Gly, Cys, and Ser, that are known to promote dimerization of helices, and penalize the burial of large amino acid residues such as Arg and Trp. As a case study, we show that our method predicts the native structure of the TM homodimer glycophorin A (GpA) to be, in essence, at the global score optimum. In addition, by correlating our results with empirical point mutations on this homodimer, we demonstrate that our method can be a helpful adjunct to mutation analysis. We present a data set of canonical alpha-helices from the solved structures of TM proteins and provide a set of programs for analyzing it (http://ashtoret.tau.ac.il/~sarel). From this data set we derived 11 helix pairs, and conducted searches around their native states as a further test of our method. Approximately 73% of our predictions showed a reasonable fit (RMS deviation <2A) with the native structures compared to the success rate of 8% expected by chance. The search method we employ is less effective for helix pairs that are connected via short loops (<20 amino acid residues), indicating that short loops may play an important role in determining the conformation of alpha-helices in TM proteins.  相似文献   

2.
Sequence specificity in the dimerization of transmembrane alpha-helices.   总被引:25,自引:0,他引:25  
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.  相似文献   

3.
Jittikoon J  East JM  Lee AG 《Biochemistry》2007,46(38):10950-10959
Hydropathy plots have problems in identifying the sequences of transmembrane (TM) alpha-helices when they contain charged residues. Here we show that fluorescence spectroscopy can be used to define the ends of TM alpha-helices. Diacylglycerol kinase (DGK) from Escherichia coli contains three transmembrane (TM) alpha-helices per monomer. We have used fluorescence techniques to define the region of the putative first TM helix (TM1) that spans the hydrophobic core of the lipid bilayer surrounding DGK in reconstituted membranes. Single Cys mutants were introduced into TM1 and flanking sites, in a mutant of DGK lacking the two native Cys residues. Introduction of Cys residues into the region between residues 28 and 34 resulted in mutants with low activities, due to a combination of reduced affinities for ATP and diacylglycerol and a reduced maximum rate. Cross-linking experiments showed that the low-activity mutants were present largely in the normal, trimeric form after reconstitution. Fluorescence emission maxima for the Cys mutants labeled with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (IANBD) reconstituted into bilayers of dioleoylphosphatidylcholine varied with position, suggesting that the region of TM1 spanning the hydrophobic core of the bilayer runs from Glu-28 on the cytoplasmic side to Asp-49 or Val-50 on the periplasmic side. This locates the charged/polar cluster 32RQE34 within the hydrophobic core of the bilayer. Fluorescence quenching experiments agree with this assignment for TM1, the results showing a periodicity consistent with distinct stripes of amino acid residues along the length of the helix, the stripes facing the lipid bilayer and facing the rest of the protein, respectively. The residues located close to the glycerol backbone region of the bilayer remained the same when the lipid fatty acyl chain length was changed in the range C14 to C22, showing that hydrophobic matching between the protein and the surrounding lipid bilayer is highly efficient.  相似文献   

4.
5.
We developed novel programs for displaying and analyzing the transmembrane alpha-helical segments (TMSs) in the aligned sequences of homologous integral membrane proteins. TMS_ALIGN predicts the positions of putative TMSs in multiply aligned protein sequences and graphically shows the TMSs in the alignment. TMS_SPLIT (1). predicts the positions of TMSs for each sequence; (2). allows a user to select proteins with a specified number of TMSs, and (3). splits the sequences into groups of TMSs of equal numbers. TMS_CUT works like TMS_SPLIT, but it can cut sequences with any combination of TMSs. The BASS program similarly allows comparison of protein repeat elements, equivalent to TMS_SPLIT plus IC, but it provides the comparison data expressed in BLAST E values. These programs, together with the IntraCompare program, facilitate the identification of repeat sequences in integral membrane proteins. They also facilitate the estimation of protein topology and the determination of evolutionary pathways.  相似文献   

6.
MOTIVATION: Motion in transmembrane (TM) proteins plays an essential role in a variety of biological phenomena. Thus, developing an automated method for predicting and simulating motion in this class of proteins should result in an increased level of understanding of crucial physiological mechanisms. We have developed an algorithm for predicting and simulating motion in TM proteins of the alpha-helix bundle type. Our method employs probabilistic motion-planning techniques to suggest possible collision-free motion paths. The resulting paths are ranked according to the quality of the van der Waals interactions between the TM helices. Our algorithm considers a wide range of degrees of freedom (dofs) involved in the motion, including external and internal moves. However, in order to handle the vast dimensionality of the problem, we employ some constraints on these dofs in a way that is unlikely to rule out the native motion of the protein. Our algorithm simulates the motion, including all the dofs, and automatically produces a movie that demonstrates it. RESULTS: Overexpression of the RTK ErbB2 was implicated in causing a variety of human cancers. Recently, a molecular mechanism for rotation-coupled activation of the receptor was suggested. We applied our algorithm to investigate the TM domain of this protein, and compared our results with this mechanism. A motion pathway that was similar to the proposed mechanism ranked first, and motions with partial overlap to this pathway followed in rank order. In addition, we conducted a negative-control computational-experiment using Glycophorin A. Our results confirmed the immobility of this TM protein, resulting in degenerate paths comprising native-like conformations.  相似文献   

7.
Mall S  Broadbridge R  Sharma RP  East JM  Lee AG 《Biochemistry》2001,40(41):12379-12386
We have developed a fluorescence quenching method using peptides containing 3,5-dibromotryrosine to measure oligomerization of model transmembrane alpha-helices in lipid bilayers. Peptides of the type Ac-LysLysGlyLeu(m)XLeu(n)LysLysAla-amide where X is tryptophan or 3,5-dibromotyrosine were found to form heterodimers in bilayers of phosphatidylcholine in the liquid-crystalline phase. The free energy of dimer formation changed little with increasing number of Leu residues from 16 to 22 but increased with increasing phospholipid fatty acyl chain length, with a slope of about 0.5 kJ mol(-1) per fatty acyl chain carbon. Peptides were excluded from lipid in the gel phase, resulting in increased levels of oligomerization. Addition of cholesterol to form the liquid-ordered state led to increased dimerization but without phase separation. The presence of phosphatidylethanolamine had little effect on dimerization.  相似文献   

8.
Liu W  Crocker E  Zhang W  Elliott JI  Luy B  Li H  Aimoto S  Smith SO 《Biochemistry》2005,44(9):3591-3597
Amyloid fibrils associated with diseases such as Alzheimer's are often derived from the transmembrane helices of membrane proteins. It is known that the fibrils have a cross-beta-sheet structure where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. However, the structural basis for how the membrane-spanning helix is converted into a beta-sheet or how protofibrils associate into fibrils is not known. Here, we use a model peptide corresponding to a portion of the single transmembrane helix of glycophorin A to investigate the structural role of glycine in amyloid-like fibrils formed from transmembrane helices. Glycophorin A contains a GxxxG motif that is found in many transmembrane sequences including that of the amyloid precursor protein and prion protein. We propose that glycine, which mediates helix interactions in membrane proteins, also provides key packing motifs when it occurs in beta-sheets. We show that glycines in the glycophorin A transmembrane helix promote extended beta-strand formation when the helix partitions into aqueous environments and stabilize the packing of beta-sheets in the formation of amyloid-like fibrils. We demonstrate that fibrillization can be disrupted with a new class of inhibitors that target the molecular grooves created by glycine.  相似文献   

9.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

10.
Signature sequences are contiguous patterns of amino acids 10-50 residues long that are associated with a particular structure or function in proteins. These may be of three types (by our nomenclature): superfamily signatures, remnant homologies, and motifs. We have performed a systematic search through a database of protein sequences to automatically and preferentially find remnant homologies and motifs. This was accomplished in three steps: 1. We generated a nonredundant sequence database. 2. We used BLAST3 (Altschul and Lipman, Proc. Natl. Acad. Sci. U.S.A. 87:5509-5513, 1990) to generate local pairwise and triplet sequence alignments for every protein in the database vs. every other. 3. We selected "interesting" alignments and grouped them into clusters. We find that most of the clusters contain segments from proteins which share a common structure or function. Many of them correspond to signatures previously noted in the literature. We discuss three previously recognized motifs in detail (FAD/NAD-binding, ATP/GTP-binding, and cytochrome b5-like domains) to demonstrate how the alignments generated by our procedure are consistent with previous work and make structural and functional sense. We also discuss two signatures (for N-acetyltransferases and glycerol-phosphate binding) which to our knowledge have not been previously recognized.  相似文献   

11.
12.
杨伟  吕强 《生物信息学》2014,12(3):157-161
RosettaLigand使用多次启动对接协议的方式对蛋白质-配体复合物构象空间进行采样,在串行或并行的构象搜索实例之间并不共享采样信息。因此并行对接与串行对接相比仅仅是增加了对接的速度,并不能改善对接的性能。我们对Rosetta 3.4版中的RosettaLigand算法进行了修改,在并行的对接实例之间共享采样信息,以实现多个对接实例协同优化采样进程。在一个包含11个目标的测试集合上进行的测试表明,共享采样信息在大多数对接实验中显著地提高了近天然构象在候选结构集合中的比例,同时还降低了整个候选结构集合的平均能量。  相似文献   

13.
14.
Quantitative proteomics using stable isotope labeling strategies combined with MS is an important tool for biomarker discovery. Methods involving stable isotope metabolic labeling result in optimal quantitative accuracy, since they allow the immediate combination of two or more samples. Unfortunately, stable isotope incorporation rates in metabolic labeling experiments using mammalian organisms usually do not reach 100%. As a consequence, protein identifications in 15N database searches have poor success rates. We report on a strategy that significantly improves the number of 15N‐labeled protein identifications and results in a more comprehensive and accurate relative peptide quantification workflow.  相似文献   

15.
The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous experience with membrane proteins.  相似文献   

16.
Although it is energetically extremely unfavorable to have charged amino acid residues of a polypeptide in the hydrophobic environment of the membrane phospholipid bilayer, a few such charged residues are found in membrane-spanning regions of membrane proteins. Ion pairs (salt bridges) would be much more stable in low dielectric media than single ionized residues. This paper provides indirect evidence for a salt bridge between Asp-240 and Lys-319 in the lactose carrier of Escherichia coli. When Asp-240 was changed to alanine by site-directed mutagenesis, there was a loss of the ability to accumulate methyl-beta-D-thiogalactopyranoside (TMG), melibiose, or lactose. Fast-growing revertants were isolated on melibiose minimal agar plates. Two second-site revertants were isolated: Asp-240-->Ala plus Gly-268-->Val and Asp-240-->Ala plus Lys-319-->Gln. These revertants showed extremely poor accumulation of TMG, melibiose, and lactose, but showed significant "downhill" lactose entry into beta-galactosidase-containing cells with sugar concentrations of 2 and 5 mM. It is concluded that there is some important interaction between Asp-240 and Lys-319, possibly a salt bridge.  相似文献   

17.
The net orientation of nicotinic acetylcholine receptor transmembrane alpha-helices has been probed in both the activatable resting and nonactivatable desensitized states using linear dichroism Fourier-transform infrared spectroscopy. Infrared spectra recorded from reconstituted nicotinic acetylcholine receptor membranes after 72 h exposure to (2)H2O exhibit an intense amide I component band near 1655 cm(-1) that is due predominantly to hydrogen-exchange-resistant transmembrane peptides in an alpha-helical conformation. The measured dichroism of this band is 2.37, suggesting a net tilt of the transmembrane alpha-helices of roughly 40 degrees from the bilayer normal, although this value overestimates the tilt angle because the measured dichroism at 1655 cm(-1) also reflects the dichroism of overlapping amide I component bands. Significantly, no change in the net orientation of the transmembrane alpha-helices is observed upon agonist binding. In fact, the main changes in structure and orientation detected upon desensitization involve highly solvent accessible regions of the polypeptide backbone. Our data are consistent with a capping of the ligand binding site by the solvent accessible C-loop with little change in the structure of the transmembrane domain in the desensitized state. Changes in structure at the interface between the ligand-binding and transmembrane domains may uncouple binding from gating.  相似文献   

18.
Phospholamban is a 52 amino acid calcium regulatory protein found as pentamers in cardiac SR membranes. The pentamers form through interactions between its transmembrane domains, and are stable in SDS. We have employed a saturation mutagenesis approach to study the detailed interactions between the transmembrane segments, using a chimeric protein construct in which staphylococcal nuclease (a monomeric soluble protein) is fused to the N-terminus of phospholamban. The chimera forms pentamers observable in SDS-PAGE, allowing the effects of mutations upon the oligomeric association to be determined by electrophoresis. The disruptive effects of amino acid substitutions in the transmembrane domain were classified as sensitive, moderately sensitive or insensitive. Residues of the same class lined up on faces of a 3.5 amino acids/turn helical projection, allowing the construction of a model of the interacting surfaces in which the helices are associated in a left-handed pentameric coiled-coil configuration. Molecular modeling simulations (to be described elsewhere in detail) confirm that the helices readily form a left-handed coiled-coil helical bundle and have yielded molecular models for the interacting surfaces, the best of which is identical to that predicted by the mutagenesis. Residues lining the pore show considerable structural sensitivity to mutation, indicating that care must be taken in interpreting the results of mutagenesis studies of channels. The cylindrical ion pore (minimal diameter of 2 A) appears to be defined largely by hydrophobic residues (I40, L43 and I47) with only two mildly polar elements contributed by sulfurs in residues C36 and M50.  相似文献   

19.
We describe an effective procedure for modeling the structures of simple transmembrane helix homo-oligomers. The method differs from many previous approaches in that the only structural constraint we use to help select the correct model is the oligomerization state of the protein. The method involves the following steps: (1) perform 100-250 independent Monte Carlo energy minimizations of helix pairs to produce a large collection of well-packed structures; (2) filter the minimized structures to find those that are consistent with the expected symmetry of the oligomer; (3) cluster the structures that pass the symmetry filter; and (4) select a representative of the most populous cluster as the final prediction. We applied the method to the transmembrane helices of five proteins and compare our results to the available experimental data. Our predictions of glycophorin A, neu, the M2 channel and phospholamban resulted in a single model for each protein that agreed with the experimental results. In the case of erbB-2, however, we obtained three structurally distinct clusters of approximately equal sizes, so it was not possible to identify a clearly favored structure. This may reflect a real heterogeneity of packing modes for erbB-2, which is known to interact with different receptor subunits. Our method should be useful for obtaining structural models of transmembrane domains, improving our understanding of structure/function relationships for particular membrane proteins.  相似文献   

20.
A fast search algorithm to reveal similar polypeptide backbone structural motifs in proteins is proposed. It is based on the vector representation of a polypeptide chain fold in which the elements of regular secondary structures are approximated by linear segments (Abagyan and Maiorov, J. Biomol. Struct. Dyn. 5, 1267-1279 (1988)). The algorithm permits insertions and deletions in the polypeptide chain fragments to be compared. The fast search algorithm implemented in FASEAR program is used for collecting beta alpha beta supersecondary structure units in a number of alpha/beta proteins of Brookhaven Data Bank. Variation of geometrical parameters specifying backbone chain fold is estimated. It appears that the conformation of the majority of the fragments, although almost all of them are right-handed, is quite different from that of standard beta alpha beta units. Apart from searching for specific type of secondary structure motif, the algorithm allows automatically to identify new recurrent folding patterns in proteins. It may be of particular interest for the development of tertiary template approach for prediction of protein three-dimensional structure as well for constructing artificial polypeptides with goal-oriented conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号