首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have isolated genetic suppressors of mutations in the recJ gene of Escherichia coli in a locus we term srjA. These srjA mutations cause partial to complete alleviation of the recombination and UV repair defects conferred by recJ153 and recJ154 mutations in a recBC sbcA genetic background. The srjA gene was mapped to 37.5 min on the E. coli chromosome. This chromosomal region from the srjA5 strain was cloned into a plasmid vector and was shown to confer recJ suppression in a dominant fashion. Mutational analysis of this plasmid mapped srjA to the infC gene encoding translation initiation factor 3 (IF3). Sequence analysis revealed that all three srjA alleles cause amino acid substitutions of IF3. Suppression of recJ was shown to be allele specific: recJ153 and recJ154 mutations were suppressible, but recJ77 and the insertion allele recJ284::Tn10 were not. In addition, growth medium-conditional lethality was observed for strains carrying srjA mutations with the nonsuppressible recJ alleles. When introduced into recJ+ strains, srjA mutations conferred hyperrecombinational and hyper-UVr phenotypes. An interesting implication of these genetic properties of srjA suppression is that IF3 may regulate the expression of recJ and perhaps other recombination genes and hence may regulate the recombinational capacity of the cell.  相似文献   

3.
4.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

5.
Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.  相似文献   

6.
During the IF2-catalysed formation of the 30S initiation complex, the GTP requirement and Its subsequent hydrolysis during 70S complex formation are considered to be essential for translation initiation in Escherichia coli. In order to clarify the role of certain amino acid residues believed to be crucial for the GTP hydrolytic activity of E. coli IF2, we have introduced seven single amino acid substitutions into its GTP-binding site (Gly for Val-400; Thr for Pro-446; Gly, Glu, Gin for His-448; and Asn, Glu for Asp-501). These mutated IF2 proteins were expressed in vivo in physiological quantities and tested for their ability to maintain the growth of an E. coli strain from which the functional chromosomal copy of the infB gene has been deleted. Only one of the mutated proteins (Asp-501 to Giu) was able to sustain cell viability and several displayed a dominant negative effect. These results emphasize that the amino acid residues we substituted are essential for the iF2 functions and demonstrate the importance of GTP hydrolysis in translation initiation. These findings are discussed in relation to a previously proposed theoretical model for the IF2 G-domain.  相似文献   

7.
Initiation of protein synthesis in bacteria involves the combined action of three translation initiation factors, including translation initiation factor IF2. Structural knowledge of this bacterial protein is scarce. A fragment consisting of the four C-terminal domains of IF2 from Escherichia coli was expressed, purified, and characterized by small-angle X-ray scattering (SAXS), and from the SAXS data, a radius of gyration of 43 +/- 1 A and a maximum dimension of approximately 145 A were obtained for the molecule. Furthermore, the SAXS data revealed that E. coli IF2 in solution adopts a structure that is significantly different from the crystal structure of orthologous aIF5B from Methanobacterium thermoautotrophicum. This crystal structure constitutes the only atomic resolution structural knowledge of the full-length factor. Computer programs were applied to the SAXS data to provide an initial structural model for IF2 in solution. The low-resolution nature of SAXS prevents the elucidation of a complete and detailed structure, but the resulting model for C-terminal E. coli IF2 indicates important structural differences between the aIF5B crystal structure and IF2 in solution. The chalice-like structure with a highly exposed alpha-helical stretch observed for the aIF5B crystal structure was not found in the structural model of IF2 in solution, in which domain VI-2 is moved closer to the rest of the protein.  相似文献   

8.
This work describes the isolation of mutations in infC, the structural gene for IF3, using different genetic screens. Among 21 mutants characterised, seven were shown to produce stable variant IF3 proteins unable to fully complement a strain carrying a chromosomal deletion of the infC gene. The mutants were also shown to be unable to normally discriminate against several non-canonical initiation codons such as AUU and ACG. The two mutants with the strongest complementation or discrimination defects carry changes in the C-terminal domain of IF3, which is responsible for the binding of the factor to the 30 S ribosomal subunit. We show that the first mutant has an expected decreased but the second an unexpected increased capacity to bind the 30 S subunit. The in vivo defects of the second mutant are explained by its capacity to bind unspecifically to other targets, as shown by its increased affinity for the 50 S subunit, which is normally not recognised by the factor. Interestingly, this mutant corresponds to a change of an acidic residue that might play a negative discriminatory role in preventing interactions with non-cognate RNAs, as has been reported for acidic residues of aminoacyl-tRNA synthetases shown to be involved in tRNA recognition.  相似文献   

9.
The expression of the infC gene encoding translation initiation factor IF3 is negatively autoregulated at the level of translation, i.e. the expression of the gene is derepressed in a mutant infC background where the IF3 activity is lower than that of the wild type. The special initiation codon of infC, AUU, has previously been shown to be essential for derepression in vivo. In the present work, we provide evidence that the AUU initiation codon causes derepression by itself, because if the initiation codon of the thrS gene, encoding threonyl-tRNA synthetase, is changed from AUG to AUU, its expression is also derepressed in an infC mutant background. The same result was obtained with the rpsO gene encoding ribosomal protein S15. We also show that derepression of infCthrS, and rpsO is obtained with other ‘abnormal’ initiation codons such as AUA, AUC, and CUG which initiate with the same low efficiency as AUU, and also with ACG which initiates with an even lower efficiency. Under conditions of IF3 excess, the expression of infC is repressed in the presence of the AUU or other ‘abnormal’ initiation codons. Under the same conditions and with the same set of ‘abnormal’ initiation codons, the repression of thrS and rpsO expression is weaker. This result suggests that the infC message has specific features that render its expression particularly sensitive to excess of IF3. We also studied another peculiarity of the infC message, namely the role of a GC-rich sequence located immediately downstream of the initiation codon and conserved through evolution. This sequence was proposed to interact with a conserved region in 16S RNA and enhance translation initiation. Unexpectedly, mutating this GC-rich sequence increases infC expression, indicating that this sequence has no enhancing role. Chemical and enzymatic probing of infC RNA synthesized in vitro indicates that this GC-rich sequence might pair with another region of the mRNA. On the basis of our in vivo results we propose, as suspected from earlier in vitro results, that IF3 regulates the expression of its own gene by using its ability to differentiate between ‘normal’ and ‘abnormal’ initiation codons.  相似文献   

10.
11.
Initiation factor 3 (IF3) regulates the fidelity of bacterial translation initiation by debarring the use of non-canonical start codons or non-initiator tRNAs and prevents premature docking of the 50S ribosomal subunit to the 30S pre-initiation complex (PIC). The C-terminal domain (CTD) of IF3 can carry out most of the known functions of IF3 and sustain Escherichia coli growth. However, the roles of the N-terminal domain (NTD) have remained unclear. We hypothesized that the interaction between NTD and initiator tRNAfMet (i-tRNA) is essential to coordinate the movement of the two domains during the initiation pathway to ensure fidelity of the process. Here, using atomistic molecular dynamics (MD) simulation, we show that R25A/Q33A/R66A mutations do not impact NTD structure but disrupt its interaction with i-tRNA. These NTD residues modulate the fidelity of translation initiation and are crucial for bacterial growth. Our observations also implicate the role of these interactions in the subunit dissociation activity of CTD of IF3. Overall, the study shows that the interactions between NTD of IF3 and i-tRNA are crucial for coupling the movements of NTD and CTD of IF3 during the initiation pathway and in imparting growth fitness to E. coli.  相似文献   

12.
Three protein factors IF1, IF2 and IF3 are involved in the initiation of translation in prokaryotes. No clear function has been assigned to the smallest of these three factors, IF1. Therefore, to investigate the role of this protein in the initiation process in Escherichia coli we have mutated the corresponding gene infA. Because IF1 is essential for cell viability and no mutant selection has so far been described, the infA gene in a plasmid was mutated by site-directed mutagenesis in a strain with a chromosomal infA+ gene, followed by deletion of this infA+ gene. Using this approach, the six arginine residues of IF1 were altered to leucine or aspartate. Another set of plasmid-encoded IF1 mutants with a cold-sensitive phenotype was collected using localized random mutagenesis. All mutants with a mutated infA gene on a plasmid and a deletion of the chromosomal infA copy were viable, except for an R65D alteration. Differences in growth phenotypes of the mutants were observed in both minimal and rich media. Some of the mutated infA genes were successfully recombined into the chromosome thereby replacing the wild-type infA+ allele. Several of these recombinants showed reduced growth rate and a partial cold-sensitive phenotype. This paper presents a collection of IF1 mutants designed for in vivo and in vitro studies on the function of IF1.  相似文献   

13.
Mammalian mitochondrial ribosomes are distinguished from their bacterial and eukaryotic-cytoplasmic counterparts, as well as from mitochondrial ribosomes of lower eukaryotes, by their physical and chemical properties and their high protein content. However, they do share more functional homologies with bacterial ribosomes than with cytoplasmic ribosomes. To search for possible homologies between mammalian mitochondrial ribosomes and bacterial ribosomes at the level of initiation factor binding sites, we studied the interaction of Escherichia coli initiation factor 3 (IF3) with bovine mitochondrial ribosomes. Bacterial IF3 was found to bind to the small subunit of bovine mitochondrial ribosomes with an affinity of the same order of magnitude as that for bacterial ribosomes, suggesting that most of the functional groups contributing to the IF3 binding site in bacterial ribosomes are conserved in mitochondrial ribosomes. Increasing ionic strength affects binding to both ribosomes similarly and suggests a large electrostatic contribution to the reaction. Furthermore, bacterial IF3 inhibits the Mg2+-dependent association of mitochondrial ribosomal subunits, suggesting that the bacterial IF3 binds to mitochondrial small subunits in a functional way.  相似文献   

14.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

15.
To investigate the physiological roles of translation initiation factor IF3 and ribosomal protein L20 inEscherichia coli, theinfC, rpmI andrpIT genes encoding IF3, L35 and L20, respectively, were placed under the control oflac promoter/operator sequences. Thus, their expression is dependent upon the amount of inducer isopropyl thiogalactoside (IPTG) in the medium. Lysogenic strains were constructed with recombinant lambda phages that express eitherrpmI andrplT orinfC andrpmI in trans, thereby allowing depletion of only IF3 or L20 at low IPTG concentrations. At low IPTG concentrations in the IF3-limited strain, the cellular concentration of IF3, but not L20, decreases and the growth rate slows. Furthermore, ribosomes run off polysomes, indicating that IF3 functions during the initiation phase of protein synthesis in vivo. During slow growth, the ratio of RNA to protein increases rather than decreases as occurs with control strains, indicating that IF3 limitation disrupts feedback inhibition of rRNA synthesis. As IF3 levels drop, expression from an AUU-infC-lacZ fusion increases, whereas expression decreases from an AUG-infC-lacZ fusion, thereby confirming the model of autogenous regulation ofinfC. The effects of L20 limitation are similar; cells grown in low concentrations of IPTG exhibited a decrease in the rate of growth, a decrease in cellular L20 concentration, no change in IF3 concentration, and a small increase in the ratio of RNA to protein. In addition, a decrease in 50S subunits and the appearance of an aberrant ribosome peak at approximately 41–43S is seen. Previous studies have shown that the L20 protein negatively controls its own gene expression. Reduction of the cellular concentration of L20 derepresses the expression of anrplT-lacZ gene fusion, thus confirming autogenous regulation by L20.  相似文献   

16.
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.  相似文献   

17.
18.
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.  相似文献   

19.
20.
Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号