首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The genetic manipulation of perennial woody tree species presents a range of additional challenges compared to that of annual weedy crop species. These include long generation times and reproductive cycle, the heterogeneity of plants under investigation and, when investigating wood properties, a number of physical and biochemical limitations to microscopical and molecular experimentation. The use of in vitro wood formation systems for molecular studies and Agrobacterium-mediated introduction of transgenes overcomes many of these obstacles. Using a commercially relevant Eucalyptus species as model organism, we demonstrate here that in vitro wood formation systems can be readily employed to introduce transgenes into growing wood-producing tissue, initially leading to frequent transient gene expression in a range of cell types. Stable transformation events were observed as sectors of transformed tissue derived from primary transformation events in individual cells. The usefulness of such systems for the analysis of gene function during the process of wood formation and wood quality determination, as well as for constructing developmental fate maps of cambial derivatives, is discussed.  相似文献   

2.
European larch (Larix decidua Mill.) seedlings were inoculatedwith a number of Agrobacterium strains to screen susceptibilityto infection by agrobacteria. Nine of fourteen Agrobacteriumstrains tested were virulent on this conifer species. The attachmentof virulent Agrobacterium to larch seedling tissues was examinedusing scanning electron microscopy. Electron micrographs showedthe attachment specificity of virulent Agrobacterium to larchcells at wound sites in a manner similar to that described forcells of susceptible dicotyledonous angiosperms, indicatinga host-parasite relationship between oncogenic Agrobacteriumspp. and young seedlings of European larch. These unique electronmicrographs provide the first opportunity to document the compatibleinteractions of Agrobacterium and a conifer at the cellularlevel. Further, the evaluation of tumour formation frequencysuggested that the interactions between Agrobacterium and Europeanlarch were affected by wound site, position of inoculation,age of plant tissues, and time of co-culture. Successful infectionof Agrobacterium resulted in genetic transformation of hostcells. Agrobacterium-mediated DNA transfer and expression of bacterialgenes in larch tissues were confirmed by both Southern blotanalysis and opine assay with the transformed tissues. Key words: Agrobacterium, Larix decidua, cellular interaction, transformation, DNA transfer, scanning electron microscopy  相似文献   

3.
We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species.  相似文献   

4.
Use of ri-mediated transformation for production of transgenic plants   总被引:12,自引:0,他引:12  
Summary Agrobacterium rhizogenes-mediated transformation has been used to obtain transgenic plants in 89 different taxa, representing 79 species from 55 genera and 27 families. A diverse range of dicotyledonous plant families is represented, including one Gymnosperm family. In addition to the Ri plasmid, over half these plants have been transformed with foreign genes, including agronomically useful traits. Plants regenerated from hairy roots often show altered plant morphology such as dwarfing, increased rooting, altered flowering, wrinkled leaves and/or increased branching due to rol gene expression. These altered phenotypic features can have potential applications for plant improvement especially in the horticultural industry where such morphological alterations may be desirable. Use of A. rhizogenes and rol gene transformation has tremendous potential for genetic manipulation of plants and has been of particular benefit for improvement of ornamental and woody plants.  相似文献   

5.
Tea [Camellia sinensis (L.) O. Kuntze] is a perennial and most popular non-alcoholic caffeine-containing beverage crop. Tea has several constraints for its genetic improvement such as its high polyphenolic content and woody perennial nature. The development of transgenic tea is very difficult, laborious, and time taking process. In tea, regeneration requires minimum 8–12 months. In view of this, attempt has been made in this article to develop a rapid, efficient, and quite economical Agrobacterium-mediated root transformation system for tea. The feasibility of the developed protocol has been documented through silencing caffeine biosynthesis. For this, one-month-old tea seedlings were exposed to fresh wounding at the elongation zone of roots and were inoculated with Agrobacterium tumefaciens cultures carrying a RNAi construct (pFGC1008-CS). The pFGC1008-CS contained 376 bp of caffeine synthase (CS) cDNA fragment in sense and antisense direction with an intron in between. This has made the RNAi construct to produce a hairpin RNA (ihpRNA). The suppressed expression of CS gene and a marked reduction in caffeine and theobromine contents in young shoots of tea seedlings were obtained after root transformation through Agrobacterium infiltration. Such transformation system could be useful for functional analysis of genes in tea like woody and perennial plants.  相似文献   

6.
The method is the first successful report of Agrobacterium mediated genetic transformation of the commercially important bamboo, Dendrocalamus hamiltonii. It shows how the resistance provided by the somatic embryos of this woody monocot can be overcome using a simple and effective method. The method thus standardized can be also used for the genetic transformation of other important bamboos. Identification of the factors responsible for the resistance of the somatic embryos to Agrobacterium infection was an absolute requirement for devising a successful method. Necrosis due to polyphenol oxidation, lack of differentiation due to cell wall thickening at wound sites, waxy surfaces of somatic embryos with anti-microbial properties were found to prevent Agrobacterium attachment and infection. Therefore, the somatic embryos were transformed with fresh overnight grown Agrobacterium culture containing 500 mg/l polyvinylpyrrolidone (PVP) and 0.01 % Tween-20 as surfactant followed by co-cultivation on Murashige and Skoog (MS) medium containing the vir gene inducer acetosyringone (100 μM) and 1 mg/l 6-Benzylaminopurine BAP for 2 days. Persistent GUS expression and strong positive signals in PCR, slot blot and Southern hybridization confirmed successful genetic transformation.  相似文献   

7.
Abstract

The Agrobacterium-mediated ability to transfer genes into organisms without sexual crossing provides breeders with new opportunities to improve the efficiency of plant production. Gene transfer offers advantages over classical genetic manipulation since plants are improved without disruption of the integrity of their genomes. Several useful genes isolated from microrganisms and affecting pest resistance, rooting ability, hormonal metabolism etc., are now available. These genes can be easily cloned into suitable Ti and Ri derived plasmid vectors and transferred into woody species. The scarce ability of most fruit trees to regenerate the whole plant from in vitro-cultured cells remains the main obstacle to a wider use of gene transfer technology.  相似文献   

8.
Exposure of cell suspension protoplasts of the woody medicinalplant Solatium dulcamara L. to voltages of 250 to 1250 V cm–1for three successive pulses, each of 10–50 us duration,stimulated growth of protoplast-derived tissues. Such tissuesexhibited increased morphogenesis and required a shorter periodin culture to exhibit this effect than tissues from untreatedprotoplasts. Regenerated shoots also rooted more readily anddeveloped more prolific root systems than shoots from untreatedprotoplasts. These observations have important implicationsfor plant genetic manipulation and may have application in therecovery and rooting of shoots from tissues of woody species,normally considered recalcitrant in culture. Key words: Electroporation, protoplasts, shoot regeneration, Solanum dulcamara (woody nightshade, bittersweet)  相似文献   

9.
Transgenic chicory plants were obtained from different explantsco-cultured with Agrobacterium tumefaciens. Among tap-root,leaf and cotyledonary tissues, etiolated cotyledons showed thegreatest competence for transformation. The Agrobacterium strainsused contained either pGSGLUC1 or pTDE4 as a vector which carryboth the neomycin phosphotransferase II gene (nptll) for kanamycinresistance and ß-glucuronidase gene (uidA) under thecontrol of different promoters. Transformation was confirmedby NPTII enzymatic assay, histochemical analysis of GUS activityand DNA hybridization. Transgenic plants expressed both markergenes in root and shoot tissues. In leaves, GUS activity wasexpressed in all tissue types, whatever the nature of the promoter.Nevertheless, variable heterogeneous patterns of expressionwere observed in the different root tissues. Differential expression of the GUS fusions controlled by thedual TR or the CaMV 35S promoters are discussed. Key words: Chicory, genetic transformation, GUS activity, kanamycin resistance  相似文献   

10.
Transformation of Picea sitchensis (Bong) Carr. was investigatedby incubating embryogenic cell lines, initiated from immatureand mature zygotic embryos, with a supervirulent strain of Agrobacteriumtumefaciens. The latter carried a gus A-intron gene. Transientgene expression was determined histochemically by recordingthe number of distinct areas of ß-glucuronidase (GUS)activity. Maximum expression of the gus gene was achieved witha bacterial suspension with an OD600 of 0.8–1.1 dilutedwith an equal volume of MPM medium, Inoculation of cells withbacteria for 30 mm, 72 h co-cultivation period and exposureof Agrobacterium and plant cells to 50 µM acetosyrmngone.These results are discussed in relation to Agrobacterium-mediatedgene delivery for the stable transformation of Sitka spruceand other conifers. Key words: Sitka spruce, Agrobacterium, transformation, embryonal suspensor masses, GUS activity  相似文献   

11.
The development of the microalgal industry requires advances in every aspect of microalgal biotechnology. In this regard, the availability of genetic engineering tools for industrially-promising species is key. As Scenedesmus almeriensis has promise for industrial use, we describe here an Agrobacterium-based methodology that allows stable genetic transformation of it for the first time, thus opening the way to its genetic manipulation. Transformation was accomplished using two different antibiotic resistance genes [hygromicine phophotransferase (hpt) and Shble] and it is credited by PCR amplification of both hpt/Shble and GUS genes and by the β-glucuronidase activity of transformed cells. Nevertheless, the single 35S promoter seems unable to direct gene expression to a convenient level in S. almeriensis as suggested by the low GUS enzymatic activity. Temperature was critical for the transformation efficiency.  相似文献   

12.
Agrobacterium mediated genetic transformation of plants have advantages over other methods, especially for making single copy transgenic plants with reduced chances of gene silencing and instability. However, monocotyledonous plant species could not utilize the full potential of this system because of possible limitations in Agrobacterium interaction with monocot plant cells. Agrobacterium attachment as a factor in genetic transformation was studied in the leaf, shoot apex, and leaf derived callus of sorghum (Sorghum bicolor (L) Moench). Pre-induction of Agrobacterium with acetosyringone was found necessary for Agrobacterium attachment to sorghum tissues. All the explants responded positively, with preferential Agrobacterium attachment and colonization around the tissues having actively dividing cells. Callus proved to be the best explant for Agrobacterium attachment as observed in scanning electron microscopy and transient GUS expression. Loss of Agrobacterium attachment was observed with an increase in the degree of tissue differentiation.Key words: Genetic transformation, Acetosyringone, Scanning electron microscopy, Transient gene expression, GUS assays, qRT-PCR  相似文献   

13.
The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.  相似文献   

14.
The genetic manipulation of lettuce (Lactuca sativa) necessitatesa reliable and efficient, genotype-independent method of transformation.Thirteen lettuce cultivars have been assessed for their amenabilityto Agrobacterrum-mediated gene transfer linked to their tissueculture responsiveness, including callus induction and shootregeneration. A reliable protocol has been developed for theroutine production of transgenic plants for all 13 cultivarsinvestigated. Key words: Agrobacterium-mediated transformation, Lactuca sativa genotypes, lettuce  相似文献   

15.
A transformation system is described for Solanum dulcamara usingthe supervirulentAgrobacterium tumefaciens strain 1065, carryingboth the ß-glucuronidase (gus) and neomycin phosphotransferaseII (npt II) genes adjacent to the right and left T-DNA borders,respectively. Leaf explants were more efficient for the productionof transformed plants compared to stem explants on medium containing50 mg l-1of kanamycin sulphate. A 1:10 (v:v) dilution of anovernight culture ofAgrobacterium gave optimal transformationin terms of transgenic plant regeneration. From a total of 174kanamycin-resistant plants selected by their antibiotic resistance,16 failed to exhibit GUS activity. Southern analysis revealedthat these GUS-negative transformants originated from threeindependently transformed cell lines. Restriction enzyme analysesshowed that the GUS-negative plants had both the gus and nptII genes integrated into their genome (one plant had a singlecopy of each gene; the other two plants had multiple copies),with major rearrangement of the gus gene occurring in plantswith several copies of the transgene. GUS-negative plants showedleaf malformations, delayed flowering and a reduction in flower,fruit and seed production compared to GUS-positive and non-transformed(control) plants. Although gene silencing of the gus gene occurred,albeit at a low frequency (9.2%), the transformation systemdescribed generates large numbers of phenotypically normal,stably transformed plants. Copyright 2000 Annals of Botany Company Agrobacterium -mediated transformation, gene silencing, Solanum dulcamara L. (Bittersweet, Woody Nightshade), T-DNA truncation, transgene expression  相似文献   

16.
This review summarizes progress on the genetic transformation of millets and discusses the future prospects for the development of improved varieties. Only a limited number of studies have been carried out on genetic improvement of millets despite their nutritional importance in supplying minerals, calories and protein. Most genetic transformation studies of millets have been restricted to pearl millet and bahiagrass and most studies have been limited to the assessment of reporter and marker gene expression. Biolistic-mediated gene delivery has been frequently used for the transformation of millets but Agrobacterium-mediated transformation is still lagging. Improved transformation of millets, allied to relevant gene targets which may offer, for example, improved nutritional quality, resistance to abiotic and biotic stresses, and resistance to fungal infection will play important roles in millet improvement.  相似文献   

17.
The desert shrub Leptadenia pyrotechnica (Forssk.) Decne (Asclepiadaceae) is an important multipurpose woody species of tropical and sub-tropical arid regions. The shrub’s excellent pharmacological properties, importance in desert afforestation and role in sand dune fixation has been elaborately studied in recent years which make it a potential candidate for genetic manipulation in the global warming scenario. We have developed an Agrobacterium-mediated transformation protocol for L. pyrotechnica using hypocotyl explants from 5 days old seedlings. The reliability of the protocol has been tested by transforming the species with gus and gfp reporter genes separately. Hypocotyl explants were sonicated for 40 s, infected with Agrobacterium suspension of OD600 0.5, co-cultivated in the dark for 2 days at 26 °C in presence of 200 μM acetosyringone. Transgenic plants were obtained after 20–22 weeks at a frequency of 14 and 11 % for gus and gfp reporter genes respectively. Transgenic plants were confirmed by PCR and Southern blots. Expression of the two reporter genes has been tested in different stages of transgenic plant development. No phenotypic differences between the wild-type and transgenic plants were noted. This method will be very helpful to introduce alien genes-of-interest for various biotechnological applications.  相似文献   

18.
A concise T-DNA element was engineered containing the rice class-I chitinase gene expressed under the control of CaMV35S and the hygromycin phosphotransferase gene (hph) as a selectable marker. The binary plasmid vector pNO1 with the T-DNA element containing these genes of interest was mobilized to Agrobacterium tumefaciens strain LBA4404 to act as an efficient donor of T-DNA in the transformation of three different indica rice cultivars from different ecosystems. Many morphologically normal, fertile transgenic plants from these rice cultivars were generated after Agrobacterium-mediated transformation using 3-week-old scutella calli as initial explants. Stable integration, inheritance and expression of the chimeric chitinase gene were demonstrated by Southern blot and Western blot analysis of the transformants. Bioassay data showed that transgenic plants can restrict the growth of the sheath blight pathogen Rhizoctonia solani. Bioassay results were correlated with the molecular analysis. Although we obtained similar results upon DNA-mediated transformation, this report shows the potential of the cost-effective, simple Agrobacterium system for genetic manipulation of rice cultivars with a pathogenesis-related (PR) gene. Received: 26 July 1999 / Accepted: 27 August 1999  相似文献   

19.
Genetic transformation of plants by Agrobacterium, which in nature causes neoplastic growths, represents the only known case of trans‐kingdom DNA transfer. Furthermore, under laboratory conditions, Agrobacterium can also transform a wide range of other eukaryotic species, from fungi to sea urchins to human cells. How can the Agrobacterium virulence machinery function in such a variety of evolutionarily distant and diverse species? The answer to this question lies in the ability of Agrobacterium to hijack fundamental cellular processes which are shared by most eukaryotic organisms. Our knowledge of these host cellular functions is critical for understanding the molecular mechanisms that underlie genetic transformation of eukaryotic cells. This review outlines the bacterial virulence machinery and provides a detailed discussion of seven major biological systems of the host cell–cell surface receptor arrays, cellular motors, nuclear import, chromatin targeting, targeted proteolysis, DNA repair, and plant immunity – thought to participate in the Agrobacterium‐mediated genetic transformation.  相似文献   

20.
TheAgrobacteriumT-cytgene was transferred into lettuce,Latucasativa‘Saladin’ using a genotype-independent transformationprocedure employing a supervirulentAgrobacterium tumefaciensstraincarrying the binary vector pMOG23. Kanamycin-resistant shootswere initiated from inoculated explants only when sites weredeleted within the T-cytpromoter. In culture, kanamycin-resistantshoots exhibited several phenotypes, including gall production,reduced internode length (dwarfism) and vitrification togetherwith differences in rooting. Rooted, neomycin phosphotransferase(NPTII)-positive plants recovered from their abnormal phenotypeand self pollinated to produce viable seed, following transferto the glasshouse. Kanamycin-resistant lettuce plants exhibitedincreased cytokinin and chlorophyll contents compared to non-transformedplants, physiological features which could benefit long-termstorage of this leafy vegetable.Copyright 1999 Annals of BotanyCompany Agrobacterium-mediated transformation, cytokinins,Lactuca sativaL., pigmentation, T-cytexpression, lettuce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号