首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The protamine gene cluster containing the Prm1, Prm2, Prm3, and Tnp2 genes is present in humans, mice, and rats. The Prm1, Prm2, and Tnp2 genes have been extensively studied, but almost nothing is known about the function and regulation of the Prm3 gene. Here we demonstrate that an intronless Prm3 gene encoding a distinctive small acidic protein is present in 13 species from seven orders of mammals. We also demonstrate that the Prm3 gene has not generated retroposons, which supports the contention that genes that are expressed in meiotic and haploid spermatogenic cells do not generate retroposons. The Prm3 mRNA is first detected in early round spermatids, while the PRM3 protein is first detected in late spermatids. Thus, translation of the Prm3 mRNA is developmentally delayed similar to the Prm1, Prm2, and Tnp2 mRNAs. In contrast to PRM1, PRM2, and TNP2, PRM3 is an acidic protein that is localized in the cytoplasm of elongated spermatids and transfected NIH-3T3 cells. To elucidate the function of PRM3, the Prm3 gene was disrupted by homologous recombination. Sperm from Prm3(-/-) males exhibited reductions in motility, but the fertility of Prm3(-/-) and Prm3(+/+) males was similar in matings of one male and one female. We have developed a competition test in which a mutant male has to compete with a rival wild-type male to fertilize a female; the implications of these results are also discussed.  相似文献   

4.
5.
6.
Post-copulatory sexual selection in the form of sperm competition is known to influence the evolution of male reproductive proteins in mammals. The relationship between sperm competition and regulatory evolution, however, remains to be explored. Protamines and transition nuclear proteins are involved in the condensation of sperm chromatin and are expected to affect the shape of the sperm head. A hydrodynamically efficient head allows for fast swimming velocity and, therefore, more competitive sperm. Previous comparative studies in rodents have documented a significant association between the level of sperm competition (as measured by relative testes mass) and DNA sequence evolution in both the coding and promoter sequences of protamine 2. Here, we investigate the influence of sexual selection on protamine and transition nuclear protein mRNA expression in the testes of eight mouse species that differ widely in levels of sperm competition. We also examined the relationship between relative gene expression levels and sperm head shape, assessed using geometric morphometrics. We found that species with higher levels of sperm competition express less protamine 2 in relation to protamine 1 and transition nuclear proteins. Moreover, there was a significant association between relative protamine 2 expression and sperm head shape. Reduction in the relative abundance of protamine 2 may increase the competitive ability of sperm in mice, possibly by affecting sperm head shape. Changes in gene regulatory sequences thus seem to be the basis of the evolutionary response to sexual selection in these proteins.  相似文献   

7.
8.
Nucleotide sequence of the gene encoding mouse transition protein 2   总被引:1,自引:0,他引:1  
K C Kleene  J Gerstel  D Shih 《Gene》1990,95(2):301-302
The gene encoding the testis-specific basic chromosomal protein, mouse transition protein 2, is split by a single small intron that falls between the first and second nucleotides of a codon. Since the genes encoding protamines 1 and 2 and transition protein 1 in mammals contain a single intron in the same position, protamines and transition proteins appear to be evolutionarily related.  相似文献   

9.
To identify candidates for cis-acting sequences that regulate the stage and cell-specific expression of the two coordinately regulated protamine genes in the mouse, genomic clones were isolated and the nucleotide sequences of the 5′ flanking regions and coding regions were compared. Unlike most histone genes and the multigene family of trout protamine genes which are intronless, each mouse protamine gene has a single, short intervening sequence. Although the coding regions do not share significant nucleotide homology, the 5′ flanking regions contain several short homologous sequences that may be involved in gene regulation. An additional shared sequence is present in the 3′ untranslated region surrounding the poly(A) addition signal in both genes.  相似文献   

10.
11.
R E Braun 《Enzyme》1990,44(1-4):120-128
Temporal translational control is an important mechanism of gene regulation during mouse spermatogenesis. Studies of the protamine 1 gene, one member of a class of translationally regulated genes, have shown that it is first transcribed post-meiotically in round spermatids, and that the mRNA is stored in an untranslatable form as an inactive ribonucleoprotein particle for up to 1 week before it is translated. The analysis of the expression of fusions between the protamine gene and reporter genes in transgenic mice has demonstrated that sequences mapping in the 3'-untranslated region of the protamine mRNA are sufficient to confer protamine-like translational regulation on the chimeric mRNAs. It is proposed that sequence-specific RNA-binding proteins interact with the protamine 3'-untranslated region and mediate the temporal translational control. Future progress at elucidating the mechanism of translational regulation will come from the identification of translational control factors and their study in vitro and in vivo.  相似文献   

12.
13.
Protein arginine methyltransferases (PRMTs) regulate mRNA processing and maturation by modulating the activity of RNA-binding proteins through methylation. The cDNA for human PRMT1 (HRMT1L2) was recently identified. In this paper, we describe the complete genomic organization of the human PRMT1 gene (GenBank Accession No. AF222689), together with its precise chromosomal localization in relation to other neighboring genes. We have also examined its expression in a total RNA panel of 26 human tissues, the BT-474 breast carcinoma cell line, and 16 breast tumors. PRMT1, which spans 11.2 kb of genomic sequence on chromosome 19q13.3, is located in close proximity to the IRF3 and RRAS genes and is transcribed in the opposite direction. It is formed of 12 coding exons and 11 intervening introns, and shows structural similarity to other PRMT genes. Three PRMT1 isoforms exist as a result of alternative mRNA splicing. Amino acid sequence comparison of the splicing variants indicates that they are all enzymatically active methyl transferases, but with different N-terminal hydrophobic regions. PRMT1 expression was detected in a variety of tissues. We have shown that the relative prevalence of alternatively spliced forms of PRMT1 is different between normal and cancerous breast tissues. Although PRMT1 was not found to be hormonally regulated by steroid hormones in breast cancer cells, our results suggest that two variants of PRMT1 are down regulated in breast cancer.  相似文献   

14.
15.
16.
Genomic organization of the mouse OSF-1 gene.   总被引:3,自引:0,他引:3  
The mouse OSF-1 protein (also known as pleiotrophin, HB-GAM, HBGF-8, or HBNF) gene was isolated from a mouse genomic library and sequenced. OSF-1 is a 15-kD secreted protein specifically expressed in bone and brain, and is believed to play a role in brain development and osteogenesis. The mouse OSF-1 gene consists of at least 5 exons and 4 introns and spans > 32 kb. Computer analysis of approximately 4 kb of 5'-flanking sequence of the OSF-1 gene revealed two candidate promoter regions. One candidate promoter contains a thyroid hormone/retinoic acid-responsive element and the other contains two glucocorticoid-responsive elements. DNA sequence analysis of novel OSF-1 cDNA clones indicates that two promoters can be utilized in MC3T3-E1 osteoblastic cells. The overall organization of the mouse OSF-1 gene is similar and the locations of the three exon-intron junctions within the coding region are identical to the mouse gene encoding the differentiation-related factor midkine (MK). Based on this similarity and on the high degree of nucleotide sequence homology (approximately 55%) of mouse OSF-1 and mouse MK, we conclude that OSF-1 and MK are generated from a common ancestral gene and are members of a family of structurally and probably functionally related proteins.  相似文献   

17.
Structural data are presented on the protamine gene cluster (PGC) of human, mouse, rat, and bull. By restriction mapping we demonstrate that the organization of the protamine cluster is conserved throughout all four species, i.e., the genes are situated in a head to tail arrangement in the order: protamine l-protamine 2-transition protein 2. Further, we established the nucleotide sequence of the entire human PGC (25 kb in total) and the 3′ portion of the rat protamine cluster (PRM2 and TNP2 genes and intergenic region). In addition, a 1 kb fragment of the bovine and murine protamine cluster, situated between PRM2 and TNP2, was sequenced. This fragment is conserved regarding sequence, position, and orientation in all species examined, and was classified as likely coding region by gene recognition program GRAIL. Using the rat fragment as a probe in RNA blots, we detected a testis-specific signal of about 0.5 kb. Finally, we demonstrate a high density of Alu elements, both full and fragmented copies, in the human PGC and discuss their localization with respect to evolutionary and functional aspects. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The peroxin Pex3p has been identified as an integral peroxisomal membrane protein in yeast where pex3 mutants lack peroxisomal remnant structures. Although not proven in higher organisms, a role of this gene in the early peroxisome biogenesis is suggested. We report here the cDNA cloning and the genomic structure of the mouse PEX3 gene. The 2 kb cDNA encodes a polypeptide of 372 amino acids (42 kDa). The gene spans a region of 30 kb, contains 12 exons and 11 introns and is located on band A of chromosome 10. The putative promoter region exhibits characteristic housekeeping features. PEX3 expression was identified in all tissues analyzed, with the strongest signals in liver and in testis, and could not be induced by fenofibrate. The data presented may be useful for the generation of a mouse model defective in PEX3 in order to clarify the yet unknown functional impact of disturbances in early peroxisomal membrane assembly.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号