首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Tumor progression and metastasis depend on the ability of cancer cells to initiate angiogenesis to ensure delivery of oxygen, nutrients, and growth factors to tumor cells and provide access to the systemic circulation. Hypoxia-inducible factor-1 (HIF-1) can activate expression of a broad range of genes that mediate many of the adaptive responses to decreased oxygen concentration, such as enhanced glucose uptake and formation of new blood vessels. Acting through Plexin-B1 on endothelial cells, Semaphorin 4D (Sema4D) has been shown to promote angiogenesis and enhance invasive growth and proliferation in some tumors. Here we show that the gene for Sema4D, the product of which is elevated in head and neck squamous cell carcinoma (HNSCC) cells, contains upstream hypoxia response elements (HRE) and is strongly induced in hypoxia in a HIF-1-dependent manner. Knocking down Sema4D expression with short hairpin (sh) RNA reduces in vitro endothelial cell migration and growth and vascularity of HNSCC xenografts expressing a degradation resistant HIF-1α subunit. We also demonstrate a correlation between HIF-1 activity and Sema4D expression in HNSCC specimens. These findings indicate that Sema4D is induced by hypoxia in a HIF-1-dependent manner and influences endothelial cell migration and tumor vascularity. Expression of Sema4D may be a strategy by which carcinomas promote angiogenesis and therefore could represent a therapeutic target for these malignancies.  相似文献   

2.
Lee SJ  Kim HP  Jin Y  Choi AM  Ryter SW 《Autophagy》2011,7(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1 (+/-) ) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1 (+/-) mice relative to wild-type mice. Endothelial cells from Becn1 (+/-) mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1 (+/-) cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1 (+/-) endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

3.
《Autophagy》2013,9(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1+/-) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1+/- mice relative to wild-type mice. Endothelial cells from Becn1+/- mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1+/- cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1+/- endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

4.
Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1 alpha (HIF-1 alpha) expression via the Akt pathway.  相似文献   

5.
目的观察低氧条件下HIF-1α/VEGF/Notch信号通路在人脐静脉内皮细胞(HUVEC)血管生成中的作用。 方法将HUVEC进行常氧和低氧[二氯化钴(CoCl2),200 μmol/L]诱导,再将常氧和低氧处理的HUVEC应用Notch1信号通路的抑制剂DAPT (30 μmol/L,24 h)和激活剂JAG-1 (30 μmol/L,24 h)干预。通过体外小管形成实验观察低氧对HUVEC血管生成能力的影响。应用RT-PCR和Western blot检测HUVEC中低氧诱导因子-1α (HIF-1α)、血管内皮生长因子(VEGF)、基质金属蛋白酶-9 (MMP-9)和Notch1信号分子(Notch1、Dell4和JAG-1)的mRNA和蛋白表达。通过Transwell迁移实验和伤口愈合实验观察低氧、DAPT、JAG-1对HUVEC迁移能力的影响。应用MTT法检测低氧及Notch1对HUVEC增殖的影响。两组间比较采用t检验,采用析因设计方差分析低氧和DAPT以及低氧和JAG-1对HUVEC迁移能力、距离、小管形成能力和细胞增殖的交互作用。 结果与常氧组比较,低氧组小管总长[(8.18±0.62)mm比(15.43±1.32)mm]增高,差异具有统计学意义(P < 0.05)。与常氧组比较,低氧组的HIF-1α、VEGF、MMP-9、Notch1、Dell4和JAG-1的mRNA相对表达量和蛋白相对表达量(1.01±0.03比4.43±0.35,1.02±0.03比3.55±0.28,0.98±0.04比3.24±0.25,1.01±0.03比3.22±0.25,0.99±0.02比2.89±0.22,1.02±0.04比2.43±0.19,0.98±0.01比3.13±0.24,0.98±0.02比2.67±0.21,0.97±0.03比2.45±0.19,1.01±0.03比2.44±0.19,1.00±0.04比2.30±0.18,1.03±0.05比2.27±0.18)均升高,差异有统计学意义(P均< 0.05)。Transwell迁移实验和伤口愈合实验显示,低氧条件下,DAPT干预使HUVEC的迁移能力降低,JAG-1干预使HUVEC的迁移能力升高(P均< 0.05)。小管形成和MTT法测定显示,低氧条件下,DAPT干预使HUVEC的小管形成能力和细胞增殖能力降低,JAG-1干预使HUVEC的小管形成能力和细胞增殖能力升高(P均< 0.05)。析因设计的方差分析结果显示,低氧和JAG-1对迁移细胞数、小管形成和细胞增殖能力交互作用具有协同作用(P < 0.05)。 结论低氧可通过激活HIF-1α/VEGF/Notch1信号通路提高HUVEC的血管生成能力、迁移能力和细胞增殖能力。  相似文献   

6.
Glioblastoma multiforme (GBM) is the most aggressive and highly vascularized brain tumor with poor prognosis. Endothelial cell-dependent angiogenesis and tumor cell-dependent Vasculogenic mimicry (VM) synergistically contribute to glioma vascularization and progression. However, the mechanism underlying GBM vascularization remains unclear. In this study, GBM stem cells (GSCs) were divided into high and low β8 integrin (ITGB8) subpopulations. Co-culture assays followed by Cell Counting Kit-8 (CCK-8), migration, Matrigel tube formation, and sprouting assays were conducted to assess the proliferative, migratory and angiogenic capacity of GBM cells and human brain microvascular endothelial cells (hBMECs). An intracranial glioma model was constructed to assess the effect of ITGB8 on tumor vascularization in vivo. Our results indicated that ITGB8 expression was elevated in GSCs and positively associated with stem cell markers in glioma tissues, and could be induced by hypoxia and p38 activation. ITGB8 in GSCs inhibited the angiogenesis of hBMECs in vitro, while it promoted the ability of network formation and expression of VM-related proteins. The orthotopic GBM model showed that ITGB8 contributed to decreased angiogenesis, meanwhile enhanced invasiveness and VM formation. Mechanistic studies indicated that ITGB8-TGFβ1 axis modulates VM and epithelial-mesenchymal transition (EMT) process via Smad2/3-RhoA signaling. Together, our findings demonstrated a differential role for ITGB8 in the regulation of angiogenesis and VM formation in GBM, and suggest that pharmacological inhibition of ITGB8 may represent a promising therapeutic strategy for treatment of GBM.Subject terms: Cancer stem cells, CNS cancer  相似文献   

7.
Heparin affin regulatory peptide (HARP) is an 18-kDa secreted growth factor that has a high affinity for heparin and a potent role on tumor growth and angiogenesis. We have previously reported that HARP is mitogenic for different types of endothelial cells and also affects cell migration and differentiation (12). In this study we examined the signaling pathways involved in the migration and tube formation on matrigel of human umbilical vein endothelial cells (HUVEC) induced by HARP. We report for the first time that receptor-type protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), which is a receptor for HARP in neuronal cell types, is also expressed in HUVEC. We also document that HARP signaling through RPTPbeta/zeta leads to activation of Src kinase, focal adhesion kinase, phosphatidylinositol 3-kinase, and Erk1/2. Sodium orthovanadate, chondroitin sulfate-C, PP1, wortmannin, LY294002, and U0126 inhibit HARP-mediated signaling and HUVEC migration and tube formation. In addition, RPTPbeta/zeta suppression using small interfering RNA technology interrupts intracellular signals and HUVEC migration and tube formation induced by HARP. These results establish the role of RPTPbeta/zeta as a receptor of HARP in HUVEC and elucidate the HARP signaling pathway in endothelial cells.  相似文献   

8.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

9.
Hypoxia inducible factor-1 (HIF-1) is considered a crucial mediator of the cellular response to hypoxia through its regulation of genes that control angiogenesis. It represents an attractive therapeutic target in colon cancer, one of the few tumor types that shows a clinical response to antiangiogenic therapy. But it is unclear whether inhibition of HIF-1 alone is sufficient to block tumor angiogenesis. In HIF-1alpha knockdown DLD-1 colon cancer cells (DLD-1(HIF-kd)), the hypoxic induction of vascular endothelial growth factor (VEGF) was only partially blocked. Xenografts remained highly vascularized with microvessel densities identical to DLD-1 tumors that had wild-type HIF-1alpha (DLD-1(HIF-wt)). In addition to the preserved expression of VEGF, the proangiogenic cytokine interleukin (IL)-8 was induced by hypoxia in DLD-1(HIF-kd) but not DLD-1(HIF-wt) cells. This induction was mediated by the production of hydrogen peroxide and subsequent activation of NF-kappaB. Furthermore, the KRAS oncogene, which is commonly mutated in colon cancer, enhanced the hypoxic induction of IL-8. A neutralizing antibody to IL-8 substantially inhibited angiogenesis and tumor growth in DLD-1(HIF-kd) but not DLD-1(HIF-wt) xenografts, verifying the functional significance of this IL-8 response. Thus, compensatory pathways can be activated to preserve the tumor angiogenic response, and strategies that inhibit HIF-1alpha may be most effective when IL-8 is simultaneously targeted.  相似文献   

10.
Macrophage secretion of vascular endothelial growth factor (VEGF) in response to hypoxia contributes to tumor growth and angiogenesis. In addition to VEGF, hypoxic macrophages stimulated with GM-CSF secrete high levels of a soluble form of the VEGF receptor (sVEGFR-1), which neutralizes VEGF and inhibits its biological activity. Using mice with a monocyte/macrophage-selective deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α, we recently demonstrated that the antitumor response to GM-CSF was dependent on HIF-2α-driven sVEGFR-1 production by tumor-associated macrophages, whereas HIF-1α specifically regulated VEGF production. We therefore hypothesized that chemical stabilization of HIF-2α using an inhibitor of prolyl hydroxylase domain 3 (an upstream inhibitor of HIF-2α activation) would increase sVEGFR-1 production from GM-CSF-stimulated macrophages. Treatment of macrophages with the prolyl hydroxylase domain 3 inhibitor AKB-6899 stabilized HIF-2α and increased sVEGFR-1 production from GM-CSF-treated macrophages, with no effect on HIF-1α accumulation or VEGF production. Treatment of B16F10 melanoma-bearing mice with GM-CSF and AKB-6899 significantly reduced tumor growth compared with either drug alone. Increased levels of sVEGFR-1 mRNA, but not VEGF mRNA, were detected within the tumors of GM-CSF- and AKB-6899-treated mice, correlating with decreased tumor vascularity. Finally, the antitumor and antiangiogenic effects of AKB-6899 were abrogated when mice were simultaneously treated with a sVEGFR-1 neutralizing Ab. These results demonstrate that AKB-6899 decreases tumor growth and angiogenesis in response to GM-CSF by increasing sVEGFR-1 production from tumor-associated macrophages. Specific activation of HIF-2α can therefore decrease tumor growth and angiogenesis.  相似文献   

11.
The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence, GSCs with highly invasive and highly migratory activities must assume a less-motile state and proliferate to regenerate tumor mass. Elucidating the molecular mechanism underlying this transition from a highly invasive phenotype to a less-invasive, proliferative tumor could facilitate the identification of effective molecular targets for treating GBM. Here, we demonstrate that severe hypoxia (1% O2) upregulates CD44 expression via activation of hypoxia-inducible factor (HIF-1α), inducing GSCs to assume a highly invasive tumor. In contrast, moderate hypoxia (5% O2) upregulates osteopontin expression via activation of HIF-2α. The upregulated osteopontin inhibits CD44-promoted GSC migration and invasion and stimulates GSC proliferation, inducing GSCs to assume a less-invasive, highly proliferative tumor. These data indicate that the GSC phenotype is determined by interaction between CD44 and osteopontin. The expression of both CD44 and osteopontin is regulated by differential hypoxia levels. We found that CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo. Mouse brain tumors generated from CD44-knockdown GSCs exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene decreased GSC proliferation. These results suggest that interaction between CD44 and osteopontin plays a key role in tumor progression in GBM; inhibition of both CD44 and osteopontin may represent an effective therapeutic approach for suppressing tumor progression, thus resulting in a better prognosis for patients with GBM.  相似文献   

12.
13.
14.
Platelet endothelialcell adhesion molecule (PECAM)-1 has been implicated inangiogenesis, but a number of issues remain unsettled, including theindependent involvement of human PECAM-1 (huPECAM-1) in tumorangiogenesis and the mechanisms of its participation in vesselformation. We report for tumors grown in human skin transplanted on severe combined immunodeficiency mice that antibodies against huPECAM-1 (without simultaneous treatment with anti-VE-cadherin antibody) decreased the density of human, but not murine, vessels associated with the tumors. Anti-huPECAM-1 antibody alsoinhibited tube formation by human umbilical vein endothelial cells(HUVEC) and the migration of HUVEC through Matrigel-coated filters or during the repair of wounded cell monolayers. The involvement ofhuPECAM-1 in these processes was confirmed by the finding that expression of huPECAM-1 in cellular transfectants induced tube formation and enhanced cell motility. These data provide evidence of arole for PECAM-1 in human tumor angiogenesis (independent ofVE-cadherin) and suggest that during angiogenesis PECAM-1 participates in adhesive and/or signaling phenomena required for the motility ofendothelial cells and/or their subsequent organization into vascular tubes.

  相似文献   

15.
Recent studies have revealed that microRNAs (miRs) play important roles in the regulation of angiogenesis. In this study, we have characterized miR-382 upregulation by hypoxia and the functional relevance of miR-382 in tumor angiogenesis. miRs induced by hypoxia in MKN1 human gastric cancer cells were investigated using miRNA microarrays. We selected miR-382 and found that the expression of miR-382 was regulated by HIF-1α. Conditioned media (CM) from MKN1 cells transfected with a miR-382 inhibitor (antagomiR-382) under hypoxic conditions significantly decreased vascular endothelial cell (EC) proliferation, migration and tube formation. Algorithmic programs (Target Scan, miRanda and cbio) predicted that phosphatase and tensin homolog (PTEN) is a target gene of miR-382. Deletion of miR382-binding sequences in the PTEN mRNA 3′-untranslated region (UTR) diminished the luciferase reporter activity. Subsequent study showed that the overexpression of miR-382 or antagomiR-382 down- or upregulated PTEN and its downstream target AKT/mTOR signaling pathway, indicating that PTEN is a functional target gene of miR-382. In addition, PTEN inhibited miR-382-induced in vitro and in vivo angiogenesis as well as VEGF secretion, and the inhibition of miR-382 expression reduced xenograft tumor growth and microvessel density in tumors. Taken together, these results suggest that miR-382 induced by hypoxia promotes angiogenesis and acts as an angiogenic oncogene by repressing PTEN.  相似文献   

16.
17.
18.
HIF-1α is known to play an important role in the induction of VEGF by hypoxia in retinal pigment epithelial (RPE) cells. However, the involvement of the other isoform, HIF-2α, in RPE cells remains unclear. Thus, the purpose of present study was to clarify the role of HIF-2α during induction of angiogenic genes in hypoxic RPE cells. When human RPE cells (ARPE-19) were cultured under hypoxic conditions, HIF-1α and HIF-2α proteins increased. This induced an increase in mRNA for VEGF, causing secretion of VEGF protein into the medium. This conditioned medium induced tube formation in human vascular endothelial cells (HUVEC). The increased expression of mRNA for VEGF in hypoxic RPE cells was partially inhibited by HIF-1α siRNA, but not by HIF-2α siRNA. However, co-transfection of HIF-1α siRNA and HIF-2α siRNA augmented downregulation of VEGF mRNA and protein in hypoxic RPE cells and inhibited formation of tube-like structures in HUVEC. GeneChip and PCR array analyses revealed that not only VEGF, but also expression of other angiogenic genes were synergistically downregulated by co-transfection of hypoxic RPE cells with HIF-1α and HIF-2α siRNAs. These findings suggest an important compensatory role for the HIF-2α isoform in the regulation of angiogenic gene expression. Thus, suppression of angiogenic genes for HIF-1α and HIF-2α may be a possible therapeutic strategy against retinal angiogenesis in Age-related macular degeneration (ARMD).  相似文献   

19.
20.
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号