首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study intended to investigate the expression of the ZEB1 and E-cadherin proteins in lung squamous cell carcinoma (LSCC) tissues and to examine the clinicopathological correlation between protein levels and LSCC. RT-PCR and Western blot were used to examine the expression of ZEB1 and E-cadherin mRNAs and proteins in LSCC tissues as well as in adjacent normal tissues, and then analyze the relationship between the clinicopathological characteristics and the expression changes of ZEB1 and E-cadherin mRNAs in LSCC. In addition, RNAi was used to knockdown the expression of the ZEB1 gene in Human HCC827 cells; subsequently, changes in the invasive ability of the resultant cells were studied. The positive rates of ZEB1 and E-cadherin mRNAs in LSCC tissues were 69.2 and 38.5 %, respectively. They differed significantly from the corresponding positive rates in the adjacent normal lung tissues (15.4 and 80.8 %, p < 0.05). There was a negative correlation between the protein levels of ZEB1 and E-cadherin in LSCC tissues (r = -0.714, p < 0.001); in addition, it was found that ZEB1 protein expression in LSCC tissues was significantly higher than that in the neighboring normal lung tissues (p < 0.05), and its expression was also significantly higher in patients with lymph node metastases and distant metastases compared to those patients without metastatic disease (p < 0.05). On the contrary, E-cadherin expression was significantly lower in LSCC tissues than that in the neighboring normal tissue (p < 0.05). It was lower in patients with lymph node metastasis and distant metastasis compared to patients without metastatic disease (p < 0.05). However, the expression of ZEB1 and E-cadherin was independent of gender, age, tumor size, or tumor differentiation level (p > 0.05). Transfection of ZEB1 siRNA into HCC827 cells significantly reduced the ZEB1 protein level (p < 0.01) and significantly elevated E-cadherin levels (p < 0.01). Moreover, significantly less ZEB1 siRNA-transfected cells migrated through Transwell chambers in the LSCC tissue than that in the control groups (untransfected or transfected with control siRNA, p < 0.01). The expression of the ZEB1 gene in LSCC tissues is downregulated with the expression of E-cadherin. On the other hand, the expression of siRNA against ZEB1 promotes E-cadherin expression and suppresses the invasive ability conferred by E-cadherin. In conclusion, our data suggested that overexpression of the ZEB1 gene is possibly associated with the occurrence, development, invasion of LSCC.  相似文献   

2.
3.
The clinicopathological characteristics of squamous cell/adenosquamous carcinoma (SC/ASC) of the gallbladder have not been well documented, and no prognosis marker has been identified because of the rare occurrence of this gallbladder cancer subtype. In this study, we examined ACE2 and FZD1 expression in 46 SC/ASCs and 80 adenocarcinomas using immunohistochemistry and further analyzed their correlations with clinicopathological characteristics. We demonstrated that positive FZD1 and negative ACE2 expression were significantly associated with large tumor size, high TNM stage, lymph node metastasis and invasion of SC/ASC and AC. Univariate Kaplan–Meier analysis showed that positive FZD1 and negative ACE2 expression as well as differentiation, tumor size, TNM stage, lymph node metastasis, invasion, and surgical curability were closely associated with decreased overall survival in both SC/ASC (p < 0.001) and AC (p < 0.001) patients. The average survival time in SC/ASC and AC patients with FZD1?ACE2+ expression was significantly longer than that in patients with FZD1+ACE2? or FZD1+ACE2+ (p < 0.01). Multivariate Cox regression analysis showed that positive FZD1 and negative ACE2 expression are independent poor-prognostic factors for both SC/ASC and AC patients. In addition, FZD1 expression positively, but ACE2 expression negatively correlated with the expression of CA19-9 in SC/ASC and AC. Our study suggested that positive FZD1 and negative ACE2 expression are closely related to the expression of CA19-9; clinical, pathological, and biological behaviors; as well as poor-prognosis of gallbladder cancer.  相似文献   

4.
5.
Somatic cells do not have telomerase activity but immortalized cell lines and more than 85 % of the cancer cells show telomerase activation to prevent the telomere from progressive shortening. The activation of this enzyme has been found in a variety of human tumors and tumor-derived cell lines, but only few studies on telomerase activity in human brain tumors have been reported. Here, we evaluated telomerase activity in different grades of human astrocytoma and meningioma brain tumors. In this study, assay for telomerase activity performed on 50 eligible cases consisted of 26 meningioma, 24 astrocytoma according to the standard protocols. In the brain tissues, telomerase activity was positive in 39 (65 %) of 50 patients. One sample t test showed that the telomerase activity in meningioma and astrocytoma tumors was significantly positive entirely (P < 0.001). Also, grade I of meningioma and low grades of astrocytoma (grades I and II) significantly showed telomerase activity. According to our results, we suggest that activation of telomerase is an event that starts mostly at low grades of brain including meningioma and astrocytoma tumors.  相似文献   

6.
The study was done to identify the candidate causal single nucleotide polymorphisms (SNPs) and candidate causal mechanisms that contribute to Parkinson’s disease (PD) susceptibility and to generate a SNP to ene to pathway hypothesis using an analytical pathway-based approach. We used a PD genome-wide association study (GWAS) meta-analysis data of the genotypes of 2,525,705 SNPs in 4,238 PD cases and 4,239 controls. Identify candidate Causal SNPs and Pathways (ICSNPathway) analysis was applied to the PD GWAS dataset. The first stage involved the pre-selection of candidate causal SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate causal SNPs using improved-gene set enrichment analysis. ICSNPathway analysis identified three candidate SNPs, two genes, twenty-one pathways, and three hypothetical biological mechanisms: (1) rs17651549 to microtubule-associated protein tau (MAPT) to protein domain specific binding (nominal p < 0.001, false discovery rate (FDR) < 0.001), neurogenesis (nominal p < 0.001, FDR < 0.001), regulation of neurogenesis (nominal p < 0.001, FDR = 0.001), positive regulation of axonogenesis (nominal p < 0.001, FDR = 0.001), regulation of protein polymerization (nominal p < 0.001, FDR = 0.004), negative regulation of organelle organization (nominal p < 0.001, FDR = 0.004), hsa01510 (nominal p < 0.001, FDR = 0.005), neuron differentiation (nominal p < 0.001, FDR = 0.009), and axonogenesis (nominal p < 0.001, FDR = 0.009); (2) rs10445337 to MAPT to protein domain specific binding (nominal p < 0.001, FDR < 0.001), neurogenesis (nominal p < 0.001, FDR < 0.001), regulation of neurogenesis (nominal p < 0.001, FDR = 0.001), and positive regulation of axonogenesis (nominal p < 0.001, FDR = 0.001); (3) rs9938550 to HSD3B7 to hsa00363 (nominal p < 0.001, FDR = 0.004), bile acid metabolic process (nominal p = 0.005, FDR = 0.019), and steroid metabolic process (nominal p = 0.010, FDR = 0.039). By applying the ICSNPathway analysis to PD GWAS meta-analysis data, three candidate SNPs, two genes (MAPT and HSD3B7), and 21 pathways involving protein domain specific binding and neurogenesis were identified, which may contribute to PD susceptibility.  相似文献   

7.
Although iron is a first-line pro-oxidant that modulates clinical manifestations of various systemic diseases, including diabetes, the individual tissue damage generated by active oxidant insults has not been demonstrated in current animal models of diabetes. We tested the hypothesis that oxidative stress is involved in the severity of the tissues injury when iron supplementation is administered in a model of type 1 diabetes. Streptozotocin (Stz)-induced diabetic and non-diabetic Fischer rats were maintained with or without a treatment consisting of iron dextran ip at 0.1 mL day?1 doses administered for 4 days at intervals of 5 days. After 3 weeks, an extensive increase (p < 0.001) in the production of reactive oxygen species (ROS) in neutrophils of the diabetic animals on iron overload was observed. Histological analysis revealed that this treatment also resulted in higher (p < 0.05) tissue iron deposits, a higher (p < 0.001) number of inflammatory cells in the pancreas, and apparent cardiac fibrosis, as shown by an increase (p < 0.05) in type III collagen levels, which result in dysfunctional myocardial. Carbonyl protein modification, a marker of oxidative stress, was consistently higher (p < 0.01) in the tissues of the iron-treated rats with diabetes. Moreover, a significant positive correlation was found between ROS production and iron pancreas stores (r = 0.42, p < 0.04), iron heart stores (r = 0.54, p < 0.04), and change of the carbonyl protein content in pancreas (r = 0.49, p < 0.009), and heart (r = 0.48, p < 0.02). A negative correlation was still found between ROS production and total glutathione content in pancreas (r = ?0.50, p < 0.03) and heart (r = ?0.45, p < 0.04). In conclusion, our results suggest that amplified toxicity in pancreatic and cardiac tissues in rats with diabetes on iron overload might be attributed to increased oxidative stress.  相似文献   

8.
Accumulating evidence of population association studies support the hypothesis that the high heritability of major psychiatric disorders is a combination of relatively common alleles of modest effect, and rare alleles some with relatively larger effects. We have previously reported low frequency mutations in the proximal promoter of the human calreticulin (CALR) gene that co-occur with the spectrum of major psychiatric disorders. One of those mutations at ?205C>T (rs556992558) was detected in an isolate case of schizoaffective disorder. In the current study, the functional implication of mutation ?205T is studied in the human neuronal cell lines LAN-5, BE(2)-C and HEK-293. In contrast with other mutations in the promoter region which increase gene expression activity, the ?205T mutation significantly decreased gene expression in those cell lines in comparison with the wild-type ?205C nucleotide (p < 0.000001, p < 0.0005, and p < 0.017, respectively). Treatment of the cell lines with the mood-stabilizing drug, valproic acid (VPA) resulted in differential gene expression activity in the mutant ?205T versus the wild-type ?205C construct. VPA increased gene expression activity in both constructs, while a significantly higher expression activity was observed in the mutant construct (p < 0.01), indicative of the creation of a positive effector binding site for VPA as a result of the ?205T mutation. We conclude that deviation from normalcy in the level of CALR in either direction is associated with major psychiatric disorders.  相似文献   

9.
Long-term fructose consumption has been shown to evoke leptin resistance, to elevate triglyceride levels and to induce insulin resistance and hepatic steatosis. Autophagy has been suggested to function in processes such as lipid storage in adipose tissue and inflammation in liver. Autophagy and the leptin system have also been suggested to regulate each other. This study aimed to identify the changes caused by fetal undernourishment and postnatal fructose diet in the gene expression of leptin, its receptors (LEPR-a, LEPR-b, LEPR-c, LEPR-e and LEPR-f) and autophagy genes in the white adipose tissue (WAT) and liver of adult male rats in order to clarify the mechanism behind the metabolic alterations. The data clearly revealed that the long-term postnatal fructose diet decreased leptin levels (p < 0.001), LEPR (p < 0.001), especially LEPR-b (p = 0.011) and LEPR-f (p = 0.005), as well as SOCS3 (p < 0.001), ACC (p = 0.006), ATG7 (p < 0.001), MAP1LC3β (p < 0.001) and LAMP2 (p = 0.004) mRNA expression in WAT. Furthermore, LEPR (p < 0.001), especially LEPR-b (p = 0.001) and LEPR-f (p < 0.001), ACC (p = 0.010), ATG7 (p = 0.024), MAP1LC3β (p = 0.003) and LAMP2 (p < 0.001) mRNA expression in the liver was increased in fructose-fed rats. In addition, the LEPR expression in liver and MAP1LC3β expression in WAT together explained 55.7 % of the variation in the plasma triglyceride levels of the rats (R adj. 2  = 0.557, p < 0.001). These results, together with increased p62 levels in WAT (p < 0.001), could indicate decreased adipose tissue lipid storing capacity as well as alterations in liver metabolism which may represent a plausible mechanism through which fructose consumption could disturb lipid metabolism and result in elevated triglyceride levels.  相似文献   

10.
Oxidative stress is revealed as the main contributor in the pathophysiology of neuroinflammation. Analyzing plasma and cerebrospinal fluid (CSF) of patients with different clinical phenotypes of neuroinflammation, defined as clinically isolated syndrome (CIS), and those defined as relapsing remitting multiples sclerosis (RRMS), we tested peripheral and CNS oxidative stress intensity in these neuroinflammatory acute attacks. All obtained values changes were assessed regarding clinical and radiological features of CNS inflammation. The obtained results revealed an increase in malondialdehyde levels in plasma and CSF in CIS and RRMS patients compared to control values (p < 0.05). The obtained values were most prevailed in both study group, CIS and RRMS, in patients with severe clinical presentation (p < 0.05). Measured activities of catalase and total superoxide dismutase were higher in CIS and RRMS patients in plasma compared to control values (p < 0.05), parallel with an increased catalase activity and decrease in superoxide dismutase activity in CSF regarding values obtained in control group (p < 0.05). The positive correlations regarding clinical score were obtained for all tested biomarkers (p < 0.01). Although the positive correlations were observed in MDA levels in plasma and CSF, for both study patients, and their radiological findings (p < 0.01), and a negative correlation in plasma SOD activity and CIS patients’ radiological findings (p < 0.01), no other similar correlations were obtained. These findings might be useful in providing the earliest antioxidative treatment in neuroinflammation aimed to preserve total and CNS antioxidative capacity parallel with delaying irreversible, later neurological disabilities.  相似文献   

11.
Ligands of 18 kDa mitochondrial translocator protein (TSPO) differ in their cellular effects. We hypothesize that different TSPO ligands might exert different cellular responses. Therefore, following previous studies that showed different cellular responses to two specific TSPO ligands, PK 11195 and protoporphyrin IX, in human osteoblast-like cells in vitro, we now report the cellular response to another specific TSPO ligand, FGIN-1-27 (10?5 M) (MW 436 kDa), in order to characterize the effects of each TSPO ligand. We found in primary culture of the human osteoblast-like cells that cell numbers were decreased by an average of 30 % (p?<?0.001) following exposure to 10?5 M of FGIN-1-27 in comparison to vehicle controls. Cellular [18F]-FDG incorporation and ATP content were suppressed, by an average of 43 % (p?<?0.001) and 83 % (p?<?0.001), respectively. Mitochondrial mass and ΔΨm increased by an average of 26 % (p?<?0.01) and 425 % (p?<?0.0001) respectively. Lactate dehydrogenase activity was enhanced in culture media by 60 % (p?<?0.05), indicating overall cell death, while no increase in apoptotic levels was observed. Cellular proliferation, as determined by BrdU assay, was not affected. Synthesis of mRNA of TSPO, VDAC 1, and hexokinase 2 decreased in 0.3, 0.3 and 0.5 fold respectively, with accompanying decreases in protein expression of TSPO and Voltage Dependent Anion Channel 1 by 23 % (p?<?0.001) and 98 % (p?<?0.001), respectively, but without changes in hexokinase 2 protein expression. Thus it appears that 10?5 M FGIN-1-27 reduces cell viability, cell metabolism, and mitochondrial function. Previously we found similar effects of PK 11195 on mitochondrial function and cell metabolism and of protoporphyrin IX on cell death in primary osteoblast-like cells.  相似文献   

12.
Lactoferrin is an antimicrobial and immunomodulatory protein that is produced in high quantities in human milk and aids in the gastrointestinal (GI) maturation of infants. Beneficial health effects have been observed when supplementing human and animal diets with lactoferrin. A herd of genetically engineered cattle that secrete recombinant human lactoferrin in their milk (rhLF-milk) have been generated which provide an efficient production system and ideal medium for rhLF consumption. The effects of consumption of rhLF-milk were tested on young pigs as an animal model for the GI tract of children. When comparing rhLF-milk fed pigs to non-transgenic milk fed pigs (control), we observed that rhLF-milk fed pigs had beneficial changes in circulating leukocyte populations. There was a significant decrease in neutrophils (p = 0.0036) and increase in lymphocytes (p = 0.0017), leading to a decreased neutrophil to lymphocyte ratio (NLR) (p = 0.0153), which is an indicator of decreased systemic inflammation. We also observed changes in intestinal villi architecture. In the duodenum, rhLF-milk fed pigs tended to have taller villi (p = 0.0914) with significantly deeper crypts (p < 0.0001). In the ileum, pigs consuming rhLF-milk had villi that were significantly taller (p = 0.0002), with deeper crypts (p < 0.0001), and a thinner lamina propria (p = 0.0056). We observed no differences in cytokine expression between rhLF-milk and control-milk fed pigs, indicating that consumption of rhLF-milk did not change cytokine signaling in the intestines. Overall favorable changes in systemic health and GI villi architecture were observed; indicating that consumption of rhLF-milk has the potential to induce positive changes in the GI tract.  相似文献   

13.
BackgroundEzrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear.MethodsDistribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis.ResultsEzrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo.ConclusionEzrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.  相似文献   

14.
This pilot study examines the effect of heart rate variability (HRV) biofeedback on measures of electroencephalogram (EEG) during and immediately after biofeedback. Eighteen healthy males exposed to work-related stress, were randomised into an HRV biofeedback (BIO) or a comparative group (COM). EEG was recorded during the intervention and during rest periods before and after the intervention. Power spectral density in theta, alpha and beta frequency bands and theta/beta ratios were calculated. During the intervention, the BIO group had higher relative theta power [Fz and Pz (p < 0.01), Cz (p < 0.05)], lower fronto–central relative beta power (p < 0.05), and higher theta/beta [Fz and Cz (p < 0.01), Pz (p < 0.05)] than the COM group. The groups showed different responses after the intervention with increased posterior theta/beta (p < 0.05) in the BIO group and altered posterior relative theta (p < 0.05), central relative beta (p = 0.06) and central–posterior theta/beta (p < 0.01) in the post-intervention rest period. The findings of this study suggest that a single session of HRV biofeedback after a single training session was associated with changes in EEG suggestive of increased internal attention and relaxation both during and after the intervention. However, the comparative intervention was associated with changes suggestive of increased mental effort and possible anxiety during and after the intervention.  相似文献   

15.
The present study was designed to evaluate whether microRNA-146a and its adapter proteins (TRAF6 and IRAK1) are involved in the pathogenesis of diabetes-induced kidney damage. Male Sprague–Dawley rats were divided into control and diabetic groups (n = 6 in each). Diabetes was induced by injection of streptozotocin (55 mg/kg; i.p.) in 12 h fasted rats. Diabetic kidney damage was diagnosed by renal hypertrophy, thickened glomerular basement membrane, widened filtration slits, mesangial expansion, as well as by elevated levels of blood urea and creatinine in diabetic rats 2 months after induction of diabetes. While the expression of NF-κB mRNA and miR-146a were increased in diabetic kidney compared to the sham controls (p < 0.01 for both comparisons), the mRNA levels of IRAK1 and TRAF6 did not statistically reduce. The NF-κB activity and the concentrations of TNF-α, IL-6 and IL-1β in the kidney of diabetic rats were higher than the kidney of controls (p < 0.05 for TNF-α and NF-κB; p < 0.01 for IL-6 and IL-1β). Our results indicate that the upregulation of miR-146a was not accompanied by downregulation of inflammatory mediators in diabetic kidney. It is possible that a defect in the miR-146a-mediated negative loop provides a situation for sustained activation of NF-κB and its targets to promote cells toward abnormalities.  相似文献   

16.
We evaluated the effects of protein malnutrition on liver morphology and physiology in rats subjected to different malnutrition schemes. Pregnant rats were fed with a control diet or a low protein diet (LPD). Male offspring rats received a LPD during gestation, lactation, and until they were 60 days old (MM group), a late LPD that began after weaning (CM), or a LPD administrated only during the gestation-lactation period followed by a control diet (MC). On day 60, blood was collected and the liver was dissected out. We found a decrease in MM rats’ total body (p < 0.001) and liver (p < 0.05) weight. These and CM rats showed obvious liver dysfunction reflected by the increase in serum glutamic pyruvic transaminase (SGOT) (MM p < 0.001) and serum glutamic pyruvic transaminase (SGPT) (MM and CM p < 0.001) enzymes, and liver content of cholesterol (MM and CM p < 0.001) and triglycerides (MM p < 0.01; CM p < 0.001), in addition to what we saw by histology. Liver dysfunction was also shown by the increase in gamma glutamyl transferase (GGT) (MM, MC, and CM p < 0.001) and GST-pi1 (MM and CM p < 0.001, MC p < 0.05) expression levels. MC rats showed the lowest increment in GST-pi1 expression (MC vs. MM; p < 0.001, MC vs. CM; p < 0.01). ROS production (MM, CM, and MC: p < 0.001), lipid peroxidation (MM, CM, and MC p < 0.001), content of carbonyl groups in liver proteins (MM and CM p < 0.001, MC p < 0.01), and total antioxidant capacity (MM, CM, and MC p < 0.001) were increased in the liver of all groups of malnourished animals. However, MM rats showed the highest increment. We found higher TNF-α (MM and CM p < 0.001), and IL-6 (MM and CM p < 0.001) serum levels and TGF-β liver content (MM p < 0.01; CM p < 0.05), in MM and CM groups, while MC rats reverted the values to normal levels. Pro-survival signaling pathways mediated by tyrosine or serine/threonine kinases (pAKT) (MM and CM p < 0.001; MC p < 0.01) and extrasellular signal-regulated kinase (pERKs) (MM p < 0.01; CM p < 0.05) appeared to be activated in the liver of all groups of malnourished rats, suggesting the presence of cells resistant to apoptosis which would become cancerous. In conclusion, a LPD induced liver damage whose magnitude was related to the developmental stage at which malnutrition occurs and to its length.  相似文献   

17.
It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6–31.0 kg/m2). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = ?0.31; p < 0.05). In addition, fasting (r = ?0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = ?0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.  相似文献   

18.
Selected Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes occupy the convergence point of the broad range of pathways that promote Rho and Ras GTPase mediated signalling, which also regulate the activation of ezrin, a member of the ezrin-radixin-moesin (ERM) proteins family involved in the metastatic osteosarcoma spread. Previous studies described that in distinct human osteosarcoma cell lines ezrin networks the PI-PLC with complex interplay controlling the expression of the PLC genes, which codify for PI-PLC enzymes. In the present study, we analyzed the expression and the sub-cellular distribution of RhoA and Rac1 respectively after ezrin silencing and after PI-PLC ε silencing, in order to investigate whether ezrin-RhoGTPAses signalling might involve one or more specific PI-PLC isoforms in cultured 143B and Hs888 human osteosarcoma cell lines. In the present experiments, both ezrin and PLCE gene silencing had different effects upon RhoA and Rac1 expression and sub-cellular localization. Displacements of Ezrin and of RhoA localization were observed, probably playing functional roles.  相似文献   

19.
Defects in human leukocyte antigen (HLA) class I expression may allow tumor cells to escape immune recognition. T cell infiltration is associated with a good prognosis in many cancers. However, the role of HLA class I expression and tumor-infiltrating lymphocytes (TILs) in malignant pleural mesothelioma (MPM) has not been fully analyzed. In the present study, we investigated the immune profiles and conducted outcome analyses of MPM patients. HLA class I expression and TILs (CD4+, CD8+, and NK cells) were detected by immunohistochemistry in a series of 44 MPM cases. To detect HLA class I expression, specimens were stained with the anti-pan HLA class I monoclonal antibody EMR8-5. The expression of HLA class I was positive in all patients. There was no case that showed negative HLA class I expression. The density of CD4+ and CD8+ TILs were strongly correlated (R = 0.76, p < 0.001). A high density of CD8+ TILs was a significantly better prognostic factor for the survival of patients with extrapleural pneumonectomy (p < 0.05). Multivariate analysis revealed that a high density of CD8+ TILs is an independent prognostic factor for patients who underwent extrapleural pneumonectomy. The presence of intratumoral CD8+ T cells was correlated with an improved clinical outcome, raising the possibility that CD8+ T cells might play a pivotal role in the antitumor immune response against MPMs. Thus, the stimulation of CD8+ lymphocytes might be an efficacious immunotherapy for MPM patients.  相似文献   

20.
The objective of this study was to investigate the relationship between preeclampsia and iodine levels and magnesium concentration in the blood of subjects in the northeast Anatolia region where iodine deficiency is common. Blood specimens were obtained from 24 preeclamptic and 16 healthy pregnant women. Iodine levels in blood were determined by the Foss method based on the Sandell–Kolthoff reaction. Serum protein-bound iodine (PBI) levels and magnesium concentration in maternal blood were lower in patients with severe preeclampsia compared to normal pregnant women (8.46?±?1.22 vs. 11.46?±?1.71 μg/dL, p?<?0.001, 1.63?±?0.05 vs. 1.86?±?0.05 mg/dL, p?<?0.001, respectively). Serum PBI levels and magnesium concentration in umbilical cord blood were higher in patients with severe preeclampsia than in normal pregnant women (8.84?±?1.9 vs. 7.33?±?1.07 μg/dL, p?<?0.05, 2.48?±?0.03 vs. 2.02?±?0.01 mg/dL, p?<?0.001, respectively). There was a positive correlation between the serum PBI levels in maternal blood and magnesium concentration in maternal blood in patients with severe preeclampsia (r?=?0.41, p?<?0.05). Thus, iodine may be one factor contributing to the pathophysiology of preeclampsia. Iodine supplementation may be effective therapy in preeclamptic in pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号