首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Berry  M.  Carlile  J.  Hunter  A.  Tsang  W.-L.  Rosustrel  P.  Sievers  J. 《Brain Cell Biology》1999,28(9):721-741
We have studied axon regeneration through the optic chiasm of adult rats 30 days after prechiasmatic intracranial optic nerve crush and serial intravitreal sciatic nerve grafting on day 0 and 14 post-lesion. The experiments comprised three groups of treated rats and three groups of controls. All treated animals received intravitreal grafts either into the left eye after both left sided (unilateral) and bilateral optic nerve transection, or into both eyes after bilateral optic nerve transection. Control eyes were all sham grafted on day 0 and 14 post-lesion, and the optic nerves either unlesioned, or crushed unilaterally or bilaterally. No regeneration through the chiasm was seen in any of the lesioned control optic nerves. In all experimental groups, large numbers of axons regenerated across the optic nerve lesions ipsilateral to the grafted eyes, traversed the short distal segment of the optic nerve and invaded the chiasm without deflection. Regeneration was correlated with the absence of the mesodermal components in the scar. In all cases, axon regrowth through the chiasm appeared to establish a major crossed and a minor uncrossed projection into both optic tracts, with some aberrant growth into the contralateral optic nerve. Axons preferentially regenerated within the degenerating trajectories from their own eye, through fragmented myelin and axonal debris, and reactive astrocytes, oligodendrocytes, microglia and macrophages. In bilaterally lesioned animals, no regeneration was detected in the optic nerve of the unimplanted eye. Although astrocytes became reactive and their processes proliferated, the architecture of their intrafascicular processes was little perturbed after optic nerve transection within either the distal optic nerve segment or the chiasm. The re-establishment of a comparatively normal pattern of passage through the chiasm by regenerating axons in the adult might therefore be organised by this relatively immutable scaffold of astrocyte processes. Binocular interactions between regenerating axons from both nerves (after bilateral optic nerve transection and intravitreal grafting), and between regenerating axons and the intact transchiasmatic projections from the unlesioned eye (after unilateral optic nerve lesions and after ipsilateral grafting) may not be important in establishing the divergent trajectories, since regenerating axons behave similarly in the presence and absence of an intact projection from the other eye.  相似文献   

2.
Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries.  相似文献   

3.
Study of regeneration in the garfish olfactory nerve   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous studies of the olfactory nerve, mainly in higher vertebrates, have indicated that axonal injury causes total degeneration of the mature neurons, followed by replacement of new neuronal cells arising from undifferentiated mucosal cells. A similar regeneration process was confirmed in the garfish olfactory system. Regeneration of the nerve, crushed 1.5 cm from the cell bodies, is found to produce three distinct populations of regenerating fibers. The first traverses the crush site 1 wk postoperative and progresses along the nerve at a rate of 5.8 +/- 0.3 mm/d for the leading fibers of the group. The second group of fibers traverses the crush site after 2 wk postcrush and advances at a rate of 2.1 +/- 0.1 mm/d for the leading fibers. The rate of growth of this group of fibers remains constant for 60 d but subsequently falls to 1.6 +/- 0.2 for the leading population of fibers. The leading fibers in the third group of regenerating axons traverse the crush site after 4 wk and advance at a constant rate of 0.8 +/- 0.2 mm/d. The multiple populations of regenerating fibers with differing rates of growth are discussed in the context of precursor cell maturity at the time of nerve injury and possible conditioning effects of the lesion upon these cells. Electron microscopy indicates that the number of axons decreases extensively after crush. The first two phases of regenerating axons represent a total of between 6 and 10% of the original axonal population and are typically characterized by small fascicles of axons surrounded by Schwann cells and large amounts of collagenous material. The third phase of fibers represents between 50 and 70% of the original axonal population.  相似文献   

4.
5.
Nona  S.N.  Thomlinson  A.M.  Bartlett  C.A.  Scholes  J. 《Brain Cell Biology》2000,29(4):285-300
Fish optic nerve fibres quickly regenerate after injury, but the onset of remyelination is delayed until they reach the brain. This recapitulates the timetable of CNS myelinogenesis during development in vertebrate animals generally, and we have used the regenerating fish optic nerve to obtain evidence that it is the axons, not the myelinating glial cells, that determine when myelin formation begins. In fish, the site of an optic nerve injury becomes remyelinated by ectopic Schwann cells of unknown origin. We allowed these cells to become established and then used them as reporters to indicate the time course of pro-myelin signalling during a further round of axonal outgrowth following a second upstream lesion. Unlike in the mammalian PNS, the ectopic Schwann cells failed to respond to axotomy and to the initial outgrowth of new optic axons. They only began to divide after the axons had reached the brain. Shortly afterwards, small numbers of Schwann cells began to leave the dividing pool and form myelin sheaths. More followed gradually, so that by 3 months remyelination was almost completed and few dividing cells were left. Moreover, remyelination occurred synchronously throughout the optic nerve, with the same time course in the pre-existing Schwann cells, the new ones that colonised the second injury, and the CNS oligodendrocytes elsewhere. The optic axons are the only common structures that could synchronise myelin formation in these disparate glial populations. The responses of the ectopic Schwann cells suggest that they are controlled by the regenerating optic axons in two consecutive steps. First, they begin to proliferate when the growing axons reach the brain. Second, they leave the cell cycle to differentiate individually at widely different times during the ensuing 2 months, during the critical period when the initial rough pattern of axon terminals in the optic tectum becomes refined into an accurate map. We suggest that each axon signals individually for myelin ensheathment once it completes this process.  相似文献   

6.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

7.
Although astrocytic gliosis has been linked to failure of axonal regeneration in the adult mammalian CNS, its role is not fully established. We used an in vitro assay to investigate the role of reactive astrocytes and macrophages in influencing axonal growth in the lesioned adult rat optic nerve. Soon after optic nerve transection, the nonpermissive nature of the optic nerve is altered to a permissive state near the lesion. This may account for injury-induced axonal sprouting and may contribute to the failure of these sprouts to elongate beyond the site of the lesion in vivo. We provide evidence that this lesion-induced change in the axonal growth-promoting properties of the CNS near the lesion may be produced by mononuclear phagocytes. In addition, several months after optic nerve transection, the degenerated nerves, which consist mainly of astrocytes and lack myelin, i.e., astrocytic "scar" tissue, are a good substrate for neurite growth. Taken together, these results suggest that in this in vitro system, substantial inhibitory effects are not associated with regions of astrocytic gliosis and that the nonpermissive nature of the CNS white matter can be modified by macrophages.  相似文献   

8.
Fry EJ  Ho C  David S 《Neuron》2007,53(5):649-662
We report a role for Nogo receptors (NgRs) in macrophage efflux from sites of inflammation in peripheral nerve. Increasing numbers of macrophages in crushed rat sciatic nerves express NgR1 and NgR2 on the cell surface in the first week after injury. These macrophages show reduced binding to myelin and MAG in vitro, which is reversed by NgR siRNA knockdown and by inhibiting Rho-associated kinase. Fourteen days after sciatic nerve crush, regenerating nerves with newly synthesized myelin have fewer macrophages than cut/ligated nerves that lack axons and myelin. Almost all macrophages in the cut/ligated nerves lie within the Schwann cell basal lamina, while in the crushed regenerating nerves the majority migrate out. Furthermore, crush-injured nerves of NgR1- and MAG-deficient mice and Y-27632-treated rats show impaired macrophage efflux from Schwann cell basal lamina containing myelinated axons. These data have implications for the resolution of inflammation in peripheral nerve and CNS pathologies.  相似文献   

9.
Laminin is an extracellular matrix component which can promote neuritic elongation in vitro and has been implicated in the promotion of nerve regeneration in vivo. The present study was undertaken to determine if implantation of Elvax pellets containing exogenous laminin distal to site of lesion could promote regenerative responses in vivo in the adult rat peripheral (sciatic) and central (optic) nerve. In peripheral nerve preparations, Elvax pellets containing laminin or collagen were assessed for their ability to "lure" transected axons into 5-mm-long silicone tubes. In optic nerve studies, laminin pellets were inserted distal to site of nerve crush, and the extent of axonal elongation 2.5 mm to the injury site was assessed. Laminin-containing pellets appeared to support appreciable axonal elongation in both systems. This effect was dose-dependent and not exerted by collagen pellets, substrate-free pellets, or pellets containing irradiated laminin. Collagen IV had some beneficial effect in peripheral, but not central, nerve preparations.  相似文献   

10.
11.
The spinal cord has an intrinsic, limited ability of spontaneous repair; the endogenous repair of damaged tissue starts a few days after spinal cord injury (SCI). To date, however, detailed observation in histology at the injury site has not been well documented. In the present study we analyzed the histological structure of the repaired tissue from injury site of rats 6 or 14 weeks after contusion injury (NYU impactor device, 25 mm height setting) on T10, and rats 8 weeks after transplantation of lamina propria (LP) or acellular lamina propria. We found that the initial repaired tissue can be histologically divided into three different zones, i.e., fibrotic, cellular and axonal. The fibrotic zone consists of invading connective tissue, while the cellular zone is composed of invading, densely compacted Schwann cells. Schwann cells migrate from dorsal roots laterally toward and merge underneath the fibrotic zone, forming the U-shape shell of the cellular zone. The major component of the axonal zone is regenerating axons. Schwann cells myelinate regenerating axons in all three zones. In rats with combination treatments including scar ablation and LP transplantation, both cellular and axonal zones significantly expand in size, resulting in the disappearance of the lesion cavity and the integration of repaired tissue with spared tissue. Olfactory ensheathing cells from transplanted LP may promote the expansion of the cellular and axonal zones through stimulating host Schwann cells, indirectly contributing to tissue repair and axonal regeneration. The ependyma-derived cells may be directly involved in tissue repair, but not contribute to the formation of myelin sheaths.  相似文献   

12.
The rate of regeneration of rat sciatic nerve sensory axons was measured using the pinch-reflex test method, and confirmed by studying the transport of labelled protein into the regenerating axons. For nerves receiving a single test crush lesion the rate was 4.02 ± 0.03 (SE) mm/day. For nerves with a conditioning lesion made at the knee seven days prior to the test lesion at the hip the rate was 5.73 ± 0.06 mm/day, and for nerves where both conditioning and test lesions were made at the same site (hip or knee) but separated by seven days, the rate was 6.76 ± 0.04 mm/day, a 68% increase over the normal rate, showing that pre-degeneration of the nerve distal to the site of the test lesion increases the rate of regeneration. It is concluded that the rate of axon regeneration can be influenced by the environment through which the regenerating axons grow.  相似文献   

13.
Within a few decades, the repair of long neuronal pathways such as spinal cord tracts, the optic nerve or intracerebral tracts has gone from being strongly contested to being recognized as a potential clinical challenge. Cut axonal stumps within the optic nerve were originally thought to retract and become irreversibly necrotic within the injury zone. Optic nerve astrocytes were assumed to form a gliotic scar and remodelling of the extracellular matrix to result in a forbidden environment for re-growth of axons. Retrograde signals to the ganglion cell bodies were considered to prevent anabolism, thus also initiating apoptotic death and gliotic repair within the retina. However, increasing evidence suggests the reversibility of these regressive processes, as shown by the analysis of molecular events at the site of injury and within ganglion cells. We review optic nerve repair from the perspective of the proximal axon stump being a major player in determining the successful formation of a growth cone. The axonal stump and consequently the prospective growth cone, communicates with astrocytes, microglial cells and the extracellular matrix via a panoply of molecular tools. We initially highlight these aspects on the basis of recent data from numerous laboratories. Then, we examine the mechanisms by which an injury-induced growth cone can sense its surroundings within the area distal to the injury. Based on requirements for successful axonal elongation within the optic nerve, we explore the models employed to instigate successful growth cone formation by ganglion cell stimulation and optic nerve remodelling, which in turn accelerate growth. Ultimately, with regard to the proteomics of regenerating retinal tissue, we discuss the discovery of isoforms of crystallins, with crystallin beta-b2 (crybb2) being clearly upregulated in the regenerating retina. Crystallins are produced and used to promote the elongation of growth cones. In vivo and in vitro, crystallins beta and gamma additionally promote the growth of axons by enhancing the production of ciliary neurotrophic factor (CNTF), indicating that they also act on astrocytes to promote axonal regrowth synergistically. These are the first data showing that axonal regeneration is related to crybb2 movement within neurons and to additional stimulation of CNTF. We demonstrate that neuronal crystallins constitute a novel class of neurite-promoting factors that probably operate through an autocrine and paracrine mechanism and that they can be used in neurodegenerative diseases. Thus, the post-injury fate of neurons cannot be seen merely as inevitable but, instead, must be regarded as a challenge to shape conditions for initiating growth cone formation to repair the damaged optic nerve.  相似文献   

14.
In this protocol, we describe the imaging of single axons in the rat optic nerve in vivo. Axons are labeled through the intravitreal injection of adeno-associated viral vectors (AAVs) expressing a fluorophore (duration of the procedure ~1 h). Two weeks after intravitreal injection, the optic nerve is surgically exposed (duration ~1 h) and labeled axons are imaged with an epifluorescence microscope either for up to 8 h or repetitively on the following days. Additionally, intravitreal injection of calcium-sensitive dyes allows for imaging of intra-axonal calcium kinetics. This procedure enables the analysis of the morphological changes of degenerating axons in the optic nerve in different lesion paradigms, such as optic nerve crush, axotomy or pin lesion. Furthermore, the effects of pharmacological manipulations on axonal stability and axonal calcium kinetics in axons of the central nervous system can be studied in vivo.  相似文献   

15.
The polysialic acid (PSA) moiety of the neural cell adhesion molecule (NCAM) has been shown to support dynamic changes underlying peripheral nerve regeneration. Using transgenic mice expressing polysialyltransferase ST8SiaIV under control of a glial-specific (proteolipid protein, PLP) promoter (PLP-ST8SiaIV-transgenic mice), we tested the hypothesis that permanent synthesis of PSA in Schwann cells impairs functional recovery of lesioned peripheral nerves. After sciatic nerve crush, histomorphometric analyses demonstrated impaired remyelination of regenerated axons at the lesion site and in target tissue of PLP-ST8SiaIV-transgenic mice, though the number and size of regenerating unmyelinated axons were not changed. This was accompanied by slower mechanosensory recovery in PLP-ST8SiaIV-transgenic mice. However, the proportion of successfully mono-(re)innervated motor endplates in the foot pad muscle was significantly increased in PLP-ST8SiaIV-transgenic mice when compared with wild-type littermates, suggesting that long-term increase in PSA levels in regenerating nerves may favor selective motor target reinnervation. The combined negative and positive effects of a continuous polysialyltransferase overexpression observed during peripheral nerve regeneration suggest that an optimized time- and differentiation-dependent control of polysialyltransferase expression in Schwann cells may further improve recovery after peripheral nerves injury.  相似文献   

16.
Summary The architecture of normal and regenerating nerve fiber bundles in the optic nerve of the goldfish and the Crucian carp was compared to that of the axonal fascicles in the optic tectum of these teleost species with the use of ultrathin sections and freeze-fracture replicas. The fascicles in the optic nerve are clearly demarcated by astrocytic processes, in contrast to the fascicles in the tectum. No astrocytes could be identified in the tectum; in this region processes of astrocytes or of radial glial cells do not form channeling structures reminiscent of those in the optic nerve. Furthermore, tectal blood vessels lack complete investments of glial processes. It can be assumed that at least in lower vertebrates a framework of astrocytic processes might be important for growth of optic fibers over large distances, i.e., from the eye to the tectum, but may be dispensable in the target region itself.  相似文献   

17.
The clearance of debris after injuries to the nervous system is a critical step for restoration of the injured neural network. Microglia are thought to be involved in elimination of degenerating neurons and axons in the central nervous system (CNS), presumably restoring a favorable environment after CNS injuries. However, the mechanism underlying debris clearance remains elusive. Here, we establish an in vitro assay system to estimate phagocytosis of axon debris. We employed a Wallerian degeneration model by cutting axons of the cortical explants. The cortical explants were co-cultured with primary microglia or the MG5 microglial cell line. The cortical neurites were then transected. MG5 cells efficiently phagocytosed the debris, whereas primary microglia showed phagocytic activity only when they were activated by lipopolysaccharide or interferon-β. When MG5 cells or primary microglia were co-cultured with degenerated axons, p38 mitogen-activated protein kinase (MAPK) was activated in these cells. Engulfment of axon debris was blocked by the p38 MAPK inhibitor SB203580, indicating that p38 MAPK is required for phagocytic activity. Receptors that recognize dying cells appeared not to be involved in the process of phagocytosis of the axon debris. In addition, the axons undergoing Wallerian degeneration did not release lactate dehydrogenase, suggesting that degeneration of the severed axons and apoptosis may represent two distinct self-destruction programs. We observed regrowth of the severed neurites after axon debris was removed. This finding suggests that axon debris, in addition to myelin debris, is an inhibitory factor for axon regeneration.Axon degeneration is an active, tightly controlled, and versatile process of axon segment self-destruction. The lesion-induced degeneration process was first described by Waller (1) and has since been known as Wallerian degeneration (2, 3). This degeneration involves rapid blebbing and fragmentation of an entire axonal stretch into short segments, which are then removed by locally activated phagocytic cells. Phagocytic removal of damaged axons and their myelin sheaths distal to the injury is important for creating a favorable environment for axonal regeneration in the nervous system. Although the debris of degenerated axons and myelin is cleared by phagocytes in the peripheral nervous system (PNS), the debris is removed very slowly in the central nervous system (CNS)3 (4, 5). This is considered to be one of the obstacles for regeneration of the injured axons in the CNS.Apoptotic neurons are also engulfed by activated phagocytic cells. Apoptosis is very well documented in the CNS where a significant proportion of neurons undergo programmed cell death (6). To prevent the diffusion of damaging degradation products into surrounding tissues, dying neurons are phagocytosed. In the brain, apoptotic cells are engulfed mainly by the resident population of phagocytes known as microglia. Microglia are generally considered to be immune cells of the CNS (7). They respond to any kind of pathology with a reaction termed “microglial activation.” After injuries to the CNS, microglia react within a few hours with a migratory response toward the lesion site.Although insight into the mechanism of phagocytosis of dying cells by microglia has improved, little is known about the mechanism of clearance of degenerated axons and myelin debris by microglia after axonal injury in the CNS. Interestingly, the axons undergoing Wallerian degeneration do not seem to possess detectable activation of the caspase family (8), suggesting that Wallerian degeneration and apoptosis may represent two distinct self-destruction programs. Thus, the mechanism of microglial phagocytosis of dying cells might be different from that of axon/myelin debris. We aimed to elucidate the mechanism of debris clearance by microglia after an axonal injury. We established an in vitro assay system to estimate phagocytosis of degenerated axon debris. We found that p38 mitogen-activated protein kinase (MAPK) was critical for the phagocytic activity of microglia. Treatment with lipopolysaccharide (LPS) or interferon-β (IFN-β) was necessary for the primary microglia to become phagocytic. In addition, clearance of degenerated axon debris allowed axonal growth from the severed neurites, suggesting that removal of the axon debris provides a favorable environment for axonal regeneration.  相似文献   

18.
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.  相似文献   

19.
20.
Sciatic nerve axons in cyclin D1 knockout mice develop normally, become properly ensheathed by Schwann cells, and appear to function normally. However, in the Wallerian degeneration model of nerve injury, the mitotic response of Schwann cells is completely inhibited. The mitotic block is Schwann cell autonomous and developmentally regulated. Rescue analysis (by "knockin" of cyclin E) indicates that D1 protein, rather than regulatory elements of the D1 gene, provides the essential Schwann cell function. Genetic inhibition of the Schwann cell cycle shows that neuronal responses to nerve injury are surprisingly independent of Schwann cell mitotic responses. Even axonal regrowth into the distal zone of a nerve crush injury is not markedly impaired in cyclin D1-/- mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号