首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  X.S.  Ong  W.Y. 《Brain Cell Biology》1999,28(12):1053-1061
The distribution of the GABA transporter GAT-1 was studied by immunocytochemistry and electron microscopy in the monkey basal ganglia. Dense staining was observed in the globus pallidus externa and interna, intermediate in the subthalamic nucleus, and substantia nigra, and light staining in the caudate nucleus and putamen. Staining was observed in axon terminals, but not cell bodies. Electron microscopy showed that the GAT-1 positive axon terminals formed symmetrical synapses, suggesting that they were the terminals of GABAergic neurons. Comparison of areas high in GAT-1 protein with that of GABA showed a good correlation between the density in neuropil staining for GAT-1, and that of GABA.  相似文献   

2.
I Ferrer  S Sancho 《Acta anatomica》1987,129(1):43-52
In an attempt to classify neurons in the upper layers of the cerebral cortex according to modern nomenclature based on Golgi impregnations, non-pyramidal neurons in layers II and III of the dog's cerebral cortex have been categorized into thirteen types: large double-bouquet cells with long ascending and descending axons (type I double-bouquet cells); bipolar neurons; multipolar neurons with long tufted descending axons (type II double-bouquet cells); neurons with long ascending axons; neurons with superficial axon plexuses; elongated large multipolar neurons with extended generalized axonal arborizations; neurons with long descending axons; small bi-tufted neurons with short ascending, descending or local axons; small multipolar neurons with short ascending, descending or local axons; multipolar neurons with local or extended axonal arborizations usually forming arcades (some of them also with a long descending axon); basket cells; neurogliaform neurons, and chandelier cells. Neurons in the molecular layer were horizontal cells and multipolar neurons with short axons. These data have been compared with those described in other species to provide a provisional classification of non-pyramidal neurons located in the upper layers of the cerebral cortex.  相似文献   

3.
Using immunocytochemical techniques and confocal microscopy we have studied the localization of the vesicular glutamate transporters (VGLUTs) 1 and 2 in the mammalian cerebral cortex. The cardinal observations gathered to date can be summarized as follows: 1) Many VGLUT1-positive puncta coexpressing synaptophysin-1 outline pyramidal cell somata and proximal dendrites; of these, a sizeable fraction coexpress VGAT, the vesicular transporter for GABA; 2) VGLUT2-positive puncta are also present in layers II-III and some of them coexpress VGLUTI. These findings suggest that in the cerebral cortex of adult rats axon terminals expressing VGLUT1 are heterogeneous.  相似文献   

4.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

5.
The distribution of gamma-aminobutyric acid (GABA) in surgical samples of human cerebellar cortex was studied by light and electron microscope immunocytochemistry using a polyclonal antibody generated in rabbit against GABA coupled to bovine serum albumin with glutaraldehyde. Observations by light microscopy revealed immunostained neuronal bodies and processes as well as axon terminals in all layers of the cerebellar cortex. Perikarya of stellate, basket and Golgi neurons showed evident GABA immunoreactivity. In contrast, perikarya of Purkinje neurons appeared to be negative or weakly positive. Immunoreactive tracts of longitudinally- or obliquely-sectioned neuronal processes and punctate elements, corresponding to axon terminals or cross-sectioned neuronal processes, showed a layer-specific pattern of distribution and were seen on the surface of neuronal bodies, in the neuropil and at microvessel walls. Electron microscope observations mainly focussed on the analysis of GABA-labelled axon terminals and of their relationships with neurons and microvessels. GABA-labelled terminals contained gold particles associated with pleomorphic vesicles and mitochondria and established symmetric synapses with neuronal bodies and dendrites in all cortex layers. GABA-labelled terminals associated with capillaries were seen to contact the perivascular glial processes, basal lamina and endothelial cells and to establish synapses with subendothelial unlabelled axons.  相似文献   

6.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

7.
The cellular and subcellular localization of two GABA transporters, GAT-1 and GAT-3, was investigated using immunocytochemical methods in the rat cerebral cortex and thalamus during postnatal development. The distribution of the transporters is compared with that of the neuronal marker GABA, and with that of vimentin and of glial fibrillary acidic protein, which identify immature and mature astrocytes, respectively. Our observations show that the two transporters are already expressed at birth in both brain areas with the same cellular localization as in adult rats, as GAT-1 is present in growth cones and terminals only in the cortex, whereas both transporters are expressed in astrocytes in the cortex and thalamus. The distribution of GAT-1 and GAT-3 undergoes postnatal changes reflecting in general the neurogenetic events of the neocortex and thalamus and, more specifically, the maturation of GABAergic innervation. The adult-like pattern of expression is achieved in the third postnatal week in the cortex and in the second postnatal week in the thalamus. The early expression of GAT-1 in GABAergic terminals confirms previous studies showing the existence of neuronal mechanisms of GABA uptake from the embryonic stages. As for the glial localization, the precocious existence of two astrocytic GABA transporters suggests that they operate through different functional mechanisms from birth, whereas their exclusively glial expression in the thalamus indicates that the astroglia plays a major role in the transport, recycling and metabolism of thalamic GABA.  相似文献   

8.
The "glutamate-glutamine" cycle appears to have an important, albeit not exclusive role, in the recycling of glutamate (Glu) between neurons and astrocytes. Recent studies show that the efflux of glutamine (Gln) from astrocytes is mediated by SNAT3 (formerly SN1), a system N amino acid transporter localized to perisynaptic astrocytes, whereas its influx into neurons is thought to be mediated by transporters of the system A family, specifically SNAT1 and SNAT2. However, the results of our confocal and electron microscopy immunocytochemical studies of the localization of these transporters in the cerebral cortex show that SNAT1 and SNAT2 are robustly expressed in the somatodendritic domain of cortical neurons, but rarely to axon terminals. To rule out a possible influence of fixation and procedural variables on detection of SNAT1 and SNAT2 immunoreactivity in axon terminals, we used non-conventional immunocytochemical methods, which, in certain cases, improve antigen detection. Though evidencing a slightly increased percentage of axon terminals expressing the two transporters, these techniques demonstrated that SNAT1 and SNAT2 are indeed rarely localized to axon terminals. Our data thus suggest that neither SNAT1 nor SNAT2 meet the criteria for their postulated role in the "glutamate-glutamine" cycle, and indicate that other Gln transporters (either orphan or yet to be identified) must be expressed at axon terminals and sustain the Glu (and gamma-aminobutyric acid) neurotransmitter pool (s).  相似文献   

9.
Summary The axon hillock (AH) and initial segment (IS) of 10 Golgi neurons and 6 basket cells in the cerebellar cortex of the rat were investigated by electron microscopy using serial sections. An average of 10.4 and 11.3 synaptic terminals were observed to establish synaptic contact with the axon hillock region of Golgi and basket cells, respectively. Most of these terminals were identified as the varicosities of the ascending parallel fibers. It is suggested that the focal innervation of AH regions represents an excitatory input pattern which is basically different from the randomly distributed, huge, parallel-fiber input onto the dendritic trees of Golgi and basket cells. In contrast to Golgi and basket neurons, no accumulation of parallel-fiber synapses was observed around the AH of stellate cells. The IS proper of the three neuronal types were devoid of true axo-axonal synapses.  相似文献   

10.
The present study aimed to elucidate the distribution of betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) in the normal monkey cerebral neocortex and hippocampus by immunoperoxidase and Immunogold labelling. BGT-1 was observed in pyramidal neurons in the cerebral neocortex and the CA fields of the hippocampus. Large numbers of small diameter dendrites or dendritic spines were observed in the neuropil. These made asymmetrical synaptic contacts with unlabelled axon terminals containing small round vesicles, characteristic of glutamatergic terminals. BGT-1 label was observed in an extra-perisynaptic region, away from the post-synaptic density. Immunoreactivity was not observed in portions of dendrites that formed symmetrical synapses, axon terminals, or glial cells. The distribution of BGT-1 on dendritic spines, rather than at GABAergic axon terminals, suggests that the transporter is unlikely to play a major role in terminating the action of GABA at a synapse. Instead, the osmolyte betaine is more likely to be the physiological substrate of BGT-1 in the brain, and the presence of the transporter in pyramidal neurons suggests that these neurons utilize betaine to maintain osmolarity.  相似文献   

11.
The ephrin receptors EphA4 and EphB2 have been implicated in synaptogenesis and long-term potentiation in the cerebral cortex and hippocampus, where they are generally viewed as post-synaptic receptors. To determine the precise distribution of EphA4 and EphB2 in mature brain synapses, we used subcellular fractionation and electron microscopy to examine the adult mouse forebrain/midbrain. EphA4 and EphB2 were both enriched in microsomes and synaptosomes. In synaptosomes, they were present in the membrane and the synaptic vesicle fractions. While EphA4 was tightly associated with PSD-95-enriched post-synaptic density fractions, EphB2 was easily extracted with detergents. In contrast, both receptors were found in the pre-synaptic active zone fraction. By electron microscopy, EphA4 was mainly detected in axon terminals, whereas EphB2 was more frequently detected in large dendritic shafts, in the hippocampus and cerebral cortex. However, in the ventrobasal thalamus, EphB2 was detected most frequently in axon terminals and thin dendritic shafts. The localization of EphA4 and EphB2 in multiple compartments of neurons and synaptic junctions suggests that they interact with several distinct scaffolding proteins and play diverse roles at synapses.  相似文献   

12.
Summary Cells in the visual cortex (area 17) of adult rats were impregnated by the rapid Golgi method and characterized by light microscopy. Selected cells were then sectioned for electron microscopy and their cytological characteristics and the pattern of synapses on their cell bodies and dendrites were studied Twelve classical pyramidal cells from layers II–VI, two pyramid-like cells from layer VI, two inverted pyramidal cells from layers V and VI, ten spine-free non-pyramidal cells from layers II–VI and two spinous non-pyramidal cells from layer IV were examined.The cytoplasmic features of the identified cells, where these could be discerned, corresponded to those previously reported for the different cell types in conventionally prepared tissue. Pyramidal Cells received exclusively type 2 synaptic contacts on their cell bodies, type 1 contacts on their dendritic spines and a mixture of synaptic types (type II predominating) on their shafts, where synaptic density was relatively low. This pattern of synaptic contacts was consistent for all portions of the dendritic tree; inverted pyramidal cells and pyramid-like cells showed the same synaptic organization as classical pyramids. The axon collaterals of pyramidal cells established type I contacts with dendritic spines (or, rarely, shafts) of unknown origin. Non-Pyramidal Cells received both type 1 and type 2 contacts (the former predominating) on their cell bodies and dendrites. The spinous variety also received type I contacts on their dendritic spines. Axon terminal of spine-free non-pyramidal cells established type II synaptic contacts with dendritic shafts of unknown origin. The similarity in synaptic organization between the spine-free and spinous non-pyramidal cells examined in this study suggest that the latter correspond to the sparsely spinous stellate cells rather than to the spinous stellate cells of cat and monkey visual cortex.We thank the Medical Research Council for financial support  相似文献   

13.
Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge) of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type–specific rules.  相似文献   

14.
The first definitive studies of where afferents to cerebral cortex terminate were made possible by the finding that as they degenerate axon terminals become electron dense. Gold toning of Golgi impregnated neurons allowed the postsynaptic targets of these afferents to be identified by electron microscopy and also allowed the termination sites of axons from a variety of types of cortical neurons to be ascertained, while the development of antibodies to GAD and to GABA made it possible to determine which types of cortical neurons are inhibitory. Subsequently the use of gold toned, Golgi impregnated material to examine neuronal connectivity was made redundant by the development of techniques that allowed the physiological properties of cortical neurons to be evaluated in neurons filled intracellularly with markers. Intracellular filling showed the axonal trees of cortical neurons are much more widespread than had been revealed by Golgi impregnations. As a result of numerous studies of the axons of identified neurons, we know a great deal about where most of the different types of neurons in cerebral cortex form their synapses, but on the other side of the picture there is a dearth of information about the origins of the inputs that specific types of cortical neurons receive. However, it is evident that each cortical neuron is the focus of input from many other neurons, and on the basis of the available data it is estimated that a single pyramidal cell in cortex receives its input from as many as 1,000 other excitatory neurons and as many as 75 inhibitory neurons.  相似文献   

15.
Capillaries in the cat hypothalamus receive axon terminals which are comparable to neurovascular junctions in cerebral and systemic arteries and arterioles. The innervation of capillaries in the central nervous system may be derived from central neurons, in contrast to cerebral arterial vessels, which are supplied by the peripheral autonomic nervous system.  相似文献   

16.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

17.
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.  相似文献   

18.
The interrelationships between cortical efferents and terminals containing enkephalin-like immunoreactivity (ELI) were examined by combining anterograde degeneration with electron microscopic immunocytochemistry in the adult rat neostriatum. Two days following unilateral removal of the cerebral cortex, the brains were fixed by aortic arch perfusion, then sectioned and processed for the immunocytochemical localization of an antiserum directed against methionine (Met5)-enkephalin. The observed relationships between the degenerating cortical efferents and immunocytochemically labeled terminals were of two types. In the first, the degenerating and ELI containing terminals converged on the same unlabeled dendrite or dendritic spine. In the second, terminal and preterminal axons of the ELI containing neurons had one surface directly apposed to the plasma membrane of a degenerating axon terminal. These findings support the concept that neurons containing opioid peptides and cortical efferents modulate the output of common recipient neurons and may also directly interact with each other through presynaptic axonal mechanisms in the rat neostriatum.  相似文献   

19.
γ-Aminobutyric acid 1 (GAT-1) is the most copiously expressed GABA transporter; we studied its role in phasic and tonic inhibition in the neocortex using GAT-1 knockout (KO) mice. Immunoblotting and immunocytochemical studies showed that GAT-2 and GAT-3 levels in KOs were unchanged and that GAT-3 was not redistributed in KOs. Moreover, the expression of GAD65/67 was increased, whereas that of GABA or VGAT was unchanged. Microdialysis studies showed that in KOs spontaneous extracellular release of GABA and glutamate was comparable in WT and KO mice, whereas KCl-evoked output of GABA, but not of glutamate, was significantly increased in KOs. Recordings from layer II/III pyramids revealed a significant increase in GABAAR-mediated tonic conductance in KO mice. The frequency, amplitude and kinetics of spontaneous inhibitory post-synaptic currents (IPSCs) were unchanged, whereas the decay time of evoked IPSCs was significantly prolonged in KO mice. In KO mice, high frequency stimulation of GABAergic terminals induced large GABAAR-mediated inward currents associated with a reduction in amplitude and decay time of IPSCs evoked immediately after the train. The recovery process was slower in KO than in WT mice. These studies show that in the cerebral cortex of GAT-1 KO mice GAT-3 is not redistributed and GADs are adaptively changed and indicate that GAT-1 has a prominent role in both tonic and phasic GABAAR-mediated inhibition, in particular during sustained neuronal activity.  相似文献   

20.
By means of indirect immunofluorescent method vasopressin localization has been defined in neurons of the locus coeruleus, in terminals, converging to the substantia nigra cells and the sylvian aqueduct area, as well as in the granule-containing cells of the human cerebral blood vessels. The granule-containing cells are identified as melanocytes, when investigated by comparative light-optic and electron microscopical technique. The melanocytes of the cerebral vessels have various size and form in accordance to their different functional state. In some melanocytes peptide vesicles are revealed. This demonstrates a possible synthesis of vasopressin. It is supposed that local endocrine regulation of the cerebral hemocirculation is performed by cooperation of granule-containing cells, producing hormones with oppositely++ directed constrictor and dilatator action to the vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号