首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

2.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

3.
The molecular events controlling glutamate receptor ion channel gating are complex. The movement of transmembrane domain M3 within N-methyl-d-aspartate (NMDA) receptor subunits has been suggested to be one structural determinant linking agonist binding to channel gating. Here we report that covalent modification of NR1-A652C or the analogous mutation in NR2A, -2B, -2C, or -2D by methanethiosulfonate ethylammonium (MT-SEA) occurs only in the presence of glutamate and glycine, and that modification potentiates recombinant NMDA receptor currents. The modified channels remain open even after removing glutamate and glycine from the external solution. The degree of potentiation depends on the identity of the NR2 subunit (NR2A < NR2B < NR2C,D) inversely correlating with previous measurements of channel open probability. MTSEA-induced modification of channels is associated with increased glutamate potency, increased mean single-channel open time, and slightly decreased channel conductance. Modified channels are insensitive to the competitive antagonists D-2-amino-5-phosphonovaleric acid (APV) and 7-Cl-kynurenic acid, as well as allosteric modulators of gating (extracellular protons and Zn(2+)). However, channels remain fully sensitive to Mg(2+) blockade and partially sensitive to pore block by (+)MK-801, (-)MK-801, ketamine, memantine, amantadine, and dextrorphan. The partial sensitivity to (+)MK-801 may reflect its ability to stimulate agonist unbinding from MT-SEA-modified receptors. In summary, these data suggest that the SYTANLAAF motif within M3 is a conserved and critical determinant of channel gating in all NMDA receptors.  相似文献   

4.
A [3H]-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of [3H]-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) [3H]MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) [3H]MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamate and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) [3H]MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential.  相似文献   

5.
6.
To evaluate the possibility of pharmacologically distinct N-methyl-D-aspartate (NMDA) receptor subtypes, quantitative autoradiography was used to determine the potency of several compounds as inhibitors of L-[3H]glutamate or [3H]MK-801 binding to rat brain NMDA receptors in 10 brain regions. Competitive NMDA receptor antagonists displayed differing pharmacological profiles in the forebrain, cerebellum, and medial regions of the thalamus (midline nuclei). For example, compared with other competitive antagonists, 3-[(+/-)-2-carboxypiperazin-4-yl]propyl-1-phosphonate (CPP) and LY-233536 were especially weak displacers of L-[3H]glutamate binding in the cerebellum. In the the medial thalamus, CPP and D-2-amino-5-phosphonopentanoate displayed relatively low affinities, whereas LY-233536 was relatively potent. The noncompetitive NMDA receptor antagonists also displayed regional variations in their pharmacological profiles. Relative to other regions, [3H]MK-801 binding in the cerebellum was weakly displaced by MK-801 and potently displaced by dextromethorphan and SKF-10047. In the medial thalamus, 1-[1-(2-thienyl)-cyclohexyl]piperidine was relatively potent and SKF-10047 was relatively weak. These results confirm previous suggestions that the cerebellum contains a distinct NMDA receptor subtype and indicate that nuclei of the medial thalamus contain a novel NMDA receptor subtype that is distinct from both those found in the cerebellum and in the forebrain.  相似文献   

7.
W Koek  F C Colpaert 《Life sciences》1991,49(9):PL37-PL42
Because of its apparent effectiveness in detecting non-benzodiazepine anxiolytic agents, a recently introduced conflict procedure in pigeons was used to evaluate possible anti-punishment activity of various N-methyl-d-aspartate (NMDA) antagonists. Punished responding was significantly increased by competitive NMDA antagonists (CPP, CGS 19755), but not by noncompetitive NMDA antagonists acting at either the ion channel (PCP, ketamine, MK-801), the glycine site (kynurenic acid, 7-chlorokynurenic acid, ACPC), or the polyamine site (ifenprodil) of the NMDA receptor complex; the proposed glutamate antagonist, riluzole, was also ineffective.  相似文献   

8.
Oh S  Kim JI  Chung MW  Ho IK 《Neurochemical research》2000,25(12):1603-1611
The NMDA receptor has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of butorphanol on the modulation of NMDA receptor subunit NR1, NR2A, NR2B, and NR2C gene expression were investigated by using in situ hybridization technique. Continuous intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/l/h) resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels. The level of NR1 mRNA was significantly decreased in the cerebral cortex, thalamus, and CA1 area of hippocampus in butorphanol tolerant and withdrawal (7 h after stopping the infusion) rats. The NR2A mRNA was significantly decreased in the CA1 and CA3 of hippocampus in tolerant rats and increased in the cerebral cortex and dentate gyrus in butorphanol withdrawal rats. NR2B subunit mRNA was decreased in the cerebral cortex, caudate putamen, thalamus, CA3 of hippocampus in butorphanol withdrawal rats. No changes of NR1, NR2A, NR2C subunit mRNA in the cerebellar granule cell layer were observed in either butorphanol tolerant or withdrawal rats. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased significantly in all brain regions except in the thalamus and hippocampus, at the 7 hr after stopping the butorphanol infusion. These results suggest that region-specific changes of NMDA receptor subunit mRNA (NR 1 and NR2) as well as NMDA receptor binding ([3H]MK-801) are involved in the development of tolerance to and withdrawal from butorphanol.  相似文献   

9.
Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimer?s disease.  相似文献   

10.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

11.
The receptor-ionophore complex of the N-methyl-D-aspartate (NMDA)-sensitive receptor was solubilized by deoxycholic acid from rat brain using (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801) binding as a marker for the receptor. Gel filtration of the solubilized preparations on a Sephadex G-25 column revealed significant [3H]MK-801 binding sensitive to potentiation by glutamate and glutamate/glycine, which was prevented by competitive antagonists for the NMDA and strychnine-insensitive glycine (GlyB) sites. In contrast to NMDA and glycine, spermidine markedly potentiated the amount of [3H]MK-801 binding in solubilized preparations by increasing the apparent affinity of the ligand. In the presence of all three stimulants, the solubilized preparations exhibited pharmacological profiles similar to those in the membrane preparations. These results clearly indicate that the whole macromolecular NMDA receptor-ionophore complex is solubilized under the experimental conditions used.  相似文献   

12.
The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.  相似文献   

13.
14.
In this study, we have established a non-neuronal cell line stably and inducibly expressing recombinant NMDA receptors (NRs) composed of rat NR1a/NR2A subunits. EcR-293 cells were transfected with rat NR1a and NR2A cDNAs using the inducible mammalian expression vector pIND. Cell colonies resistant for the selecting agents were picked and tested for NR2A mRNA as well as protein expression using quantitative RT-PCR and flow cytometry based immunocytochemistry. Clonal cells expressing functional NMDA receptors were identified by measuring NMDA-evoked ion currents, and NMDA-induced increase in cytosolic free calcium concentration in whole-cell patch-clamp and fluorimetric calcium measurements, respectively. One clone named D5/H3, which exhibited the highest response to NMDA, was chosen to examine inducibility of the expression and for pharmacological profiling of recombinant NR1a/NR2A NMDA receptors. To check inducibility, NR2A subunit expression in D5/H3 cells treated with the inducing agent muristerone A (MuA) was compared with that in non-induced cells. Both NR2A mRNA and protein expression was several folds higher in cells treated with the inducing agent. As part of the pharmacological characterization, we examined the activation of the expressed NR1a/NR2A receptors as a function of increasing concentration of NMDA. NMDA-evoked concentration-dependent increases in cytosolic [Ca2+] with an EC50 value of 41 +/- 1 microM. In addition, whereas the NMDA response was concentration-dependently inhibited by the channel blocker MK-801 (IC50 = 58 +/- 6 nM), NR2B subunit selective NMDA receptor antagonists were ineffective. Thus, this cell line, which stably and inducibly expresses recombinant NR1a/NR2A NMDA receptors, can be a useful tool for testing NMDA receptor antagonists and studying their subunit selectivity.  相似文献   

15.
Abstract: Selective antisera for NMDA receptor subunits NR2A and NR2B have been developed. Each antiserum identifies a single band on an immunoblot at ∼175 kDa that appears to be the appropriate subunit of the NMDA receptor. Using these antisera the relative densities of the subunits in eight areas of adult rat brain have been determined. The NR2A subunit was found to be at its highest level in hippocampus and cerebral cortex, to be at intermediate levels in striatum, olfactory tubercle, midbrain, olfactory bulb, and cerebellum, and to be at lowest levels in the pons-medulla. The NR2B subunit was found to be expressed at its highest levels in the olfactory tubercle, hippocampus, olfactory bulb, and cerebral cortex. Intermediate levels were expressed in striatum and midbrain, and low levels were detected in the pons-medulla. No signal for NR2B was found in the cerebellum. These regional distributions were compared with that for [3H]MK-801 binding sites. It was found that although the distribution of the NR2A subunit corresponds well with radioligand binding, the distribution of the NR2B subunit does not. The ontogenic profiles of NR2A and NR2B subunits in the rat cerebellum were also determined. Just following birth [postnatal day (P) 2] NR2A subunits are undetectable, whereas NR2B subunits are expressed at amounts easily measurable. Beginning at about P12 the levels of NR2A rise rapidly to reach adult levels by P22. At the same time (P12), levels of NR2B protein begin to decline rapidly to reach undetectable levels by 22 days after birth. The results suggest that NMDA receptors are likely to be composed of different subunits in different parts of the brain and that even in the same tissue the receptors are likely to show different properties at various times during development due to alterations in the subunit composition of the receptor.  相似文献   

16.
In the present study we examined the effects of cocaine seizure kindling on the expression of NMDA receptors and levels of extracellular glutamate in mouse brain. Quantitative autoradiography did not reveal any changes in binding of [3H] MK-801 to NMDA receptors in several brain regions. Likewise, in situ hybridization and Western blotting revealed no alteration in expression of the NMDA receptor subunits, NR1 and NR2B. Basal overflow of glutamate in the ventral hippocampus determined by microdialysis in freely moving animals also did not differ between cocaine-kindled and control groups. Perfusion with the selective excitatory amino acid transporter inhibitor, pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mM), increased glutamate overflow confirming transport inhibition. Importantly, KCl-evoked glutamate overflow under tPDC perfusion was significantly higher in cocaine-kindled mice than in control mice. These data suggest that enhancement of depolarization stimulated glutamate release may be one of the mechanisms underlying the development of increased seizure susceptibility after cocaine kindling.  相似文献   

17.
Diabetes is characterized by hyperglycemia due partly to increased hepatic glucose production. The hypothalamus regulates hepatic glucose production in rodents. However, it is currently unknown whether other regions of the brain are sufficient in glucose production regulation. The N-methyl-d-aspartate (NMDA) receptor is composed of NR1 and NR2 subunits, which are activated by co-agonist glycine and glutamate or aspartate, respectively. Here we report that direct administration of either co-agonist glycine or NMDA into the dorsal vagal complex (DVC), targeting the nucleus of the solitary tract, lowered glucose production in vivo. Direct infusion of the NMDA receptor blocker MK-801 into the DVC negated the metabolic effect of glycine. To evaluate whether NR1 subunit of the NMDA receptor mediates the effect of glycine, NR1 in the DVC was inhibited by DVC NR1 antagonist 7-chlorokynurenic acid or DVC shRNA-NR1. Pharmacological and molecular inhibition of DVC NR1 negated the metabolic effect of glycine. To evaluate whether the NMDA receptors mediate the effects of NR2 agonist NMDA, DVC NMDA receptors were inhibited by antagonist d-2-amino-5-phosphonovaleric acid (d-APV). DVC d-APV fully negated the ability of DVC NMDA to lower glucose production. Finally, hepatic vagotomy negated the DVC glycine ability to lower glucose production. These findings demonstrate that activation of NR1 and NR2 subunits of the NMDA receptors in the DVC is sufficient to trigger a brain-liver axis to lower glucose production, and suggest that DVC NMDA receptors serve as a therapeutic target for diabetes and obesity.  相似文献   

18.
Abstract: We investigated the effect of chronically blocking NMDA receptor stimulation to examine changes in GABAA receptor expression and pharmacology in cerebellar granule cells at different stages of maturation. We have previously shown that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunits. When NMDA receptor stimulation is blocked with MK-801 during the first week in vitro, a decrease in the α1, γ2S, and γ2L receptor subunit mRNAs occurred. When present only during the second week, changes were limited to the α1 and γ2L mRNAs. Finally, if MK-801 was present during the first week and removed during the second week, these changes reversed. Whole-cell voltage-clamp recordings showed that treatment with MK-801 during either the first or second week increased the EC50 of the receptors for GABA and attenuated the potentiation mediated by flunitrazepam. Last, these properties were reversed if MK-801 was removed after the first week in vitro. Our results suggest that MK-801 reversibly inhibits GABAA receptor maturation by modulating receptor subunit expression and that the altered pharmacological responses appear to be dominated by changes in the levels of allosteric modulation mediated by the γ2 receptor subunit.  相似文献   

19.
In rat mesencephalic cell cultures, L-glutamate at concentrations ranging from 100 microM to 1 mM stimulated release of [3H]dopamine that was attenuated by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6,7-dinitroquinoxalinedione, but not by the selective NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; 10 microM) and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (300 microM). Even at 1 mM glutamate, this release was Ca2+ dependent. These observations suggest that the release was mediated by a non-NMDA receptor. Only release stimulated by a lower concentration (10 microM) of glutamate was inhibited by MK-801 (10 microM), indicating that glutamate at this concentration activates the NMDA receptor. By contrast, L-aspartate at concentrations of 10 microM to 1 mM evoked [3H]dopamine release that was completely inhibited by MK-801 (10 microM) and was also Ca2+ dependent (tested at 1 and 10 mM aspartate). Thus, effects of aspartate involved activation of the NMDA receptor. Sulfur-containing amino acids (L-homocysteate, L-homocysteine sulfinate, L-cysteate, L-cysteine sulfinate) also evoked [3H]dopamine release. Release evoked by submillimolar concentrations of these amino acids was attenuated by MK-801 (10 microM), indicating involvement of the NMDA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Neurodegeneration induced by the NMDA receptor antagonist, phencyclidine (PCP), has been used to model the pathogenesis of schizophrenia in the developing rat. Acute and sub-chronic administration of PCP in perinatal rats results in different patterns of neurodegeneration. The potential role of an alteration in the membrane expression of NMDA receptors in PCP-induced degeneration is unknown. Acute PCP treatment on postnatal day 7 increased membrane levels of both NMDA receptor subunit 1 (NR1) and NMDA receptor subunit 2B (NR2B) proteins in the frontal cortex; conversely, NR1 and NR2B protein levels in the endoplasmic reticulum fraction were decreased. Acute PCP administration also resulted in increased membrane cortical protein levels of post-synaptic density-95, as well as the activation of calpain, which paralleled the observed increase in membrane expression of NR1 and NR2B. Further, administration of the calpain inhibitor, MDL28170, prevented PCP-induced up-regulation of NR1 and NR2B. On the other hand, sub-chronic PCP treatment on postnatal days 7, 9 and 11 caused an increase in NR1 and NR2A expression, which was accompanied by an increase in both NR1 and NR2A in the endoplasmic reticulum fraction. Sub-chronic PCP administration did not alter levels of post-synaptic density-95 and had no effect on activation of calpain. These data suggest that increased trafficking accounts for up-regulation of cortical NR1/NR2B subunits following acute PCP administration, while increased protein synthesis likely accounts for the increased expression of NR1/NR2A following sub-chronic PCP treatment of the developing rat. These results are discussed in the context of the differential neurodegeneration caused by acute and subchronic PCP administration in the developing rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号