首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

2.
P Finch  P T Emmerson 《Gene》1983,25(2-3):317-323
  相似文献   

3.
4.
Regulation of the Escherichia coli uvrD gene in vivo.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

5.
A temperature-sensitive uvrD mutant, HD323 uvrD4, was isolated from the uvrD mutant HD4 uvrD3. The temperature sensitivity of the uvrD4 gene product was reversible. The suppressor mutation uvrD44 which rendered the uvrD3 mutant temperature-sensitive could be separated from the uvrD3 mutation by replacing the PstI fragment, which encodes the C-terminal half of the UvrD protein. The uvrD44 mutation was found to make host bacteria lethal at non-permissive temperatures only when cloned on a low copy vector pMF3. The nucleotide sequence of the uvrD3 and uvrD4 mutant genes was determined. The nucleotide change found in the uvrD3 at +1235, GAA to AAA, only alters the amino acid sequence from Glu at 387 to Lys. The uvrD44 has another nucleotide change at +1859, GAA to AAA (Glu at 595 to Lys), which is considered to be the suppressor mutation uvrD44.  相似文献   

6.
7.
The nucleotide sequence of the uvrD gene of E. coli.   总被引:29,自引:13,他引:29       下载免费PDF全文
The nucleotide sequence of a cloned section of the E. coli chromosome containing the uvrD gene has been determined. The coding region for the UvrD protein consists of 2,160 nucleotides which would direct the synthesis of a polypeptide 720 amino acids long with a calculated molecular weight of 82 kd. The predicted amino acid sequence of the UvrD protein has been compared with the amino acid sequences of other known adenine nucleotide binding proteins and a common sequence has been identified, thought to contribute towards adenine nucleotide binding.  相似文献   

8.
The loss of DNA helicase II (UvrD) in Escherichia coli results in sensitivity to UV light and increased levels of spontaneous mutagenesis. While the effects of various uvrD alleles have been analyzed in vivo, the proteins produced by these alleles have not been examined in any detail. We have cloned one of these alleles, uvrD252, and determined the site of the mutation conferring the phenotype. In addition, the protein it encodes has been purified to homogeneity and characterized in vitro. The mutation responsible for the phenotype was identified as a glycine-to-aspartic-acid change in the putative ATP-binding domain. In comparison to wild-type DNA helicase II, the UvrD252 enzyme exhibited reduced levels of ATPase activity and a large increase in the Km for ATP. The ability of UvrD252 to unwind DNA containing single-stranded regions, as well as DNA containing only nicks, was reduced in comparison to that of the wild-type enzyme. Possible interpretations of these results in relation to the phenotypes of the uvrD252 mutant are discussed. This represents the first detailed analysis of the biochemical properties of a mutant DNA helicase II protein.  相似文献   

9.
DNA helicase II, the product of the uvrD gene, has been implicated in DNA repair, replication, and recombination. Because the phenotypes of individual uvrD alleles vary significantly, we constructed deletion-insertion mutations in the uvrD gene to determine the phenotype of cells lacking DNA helicase II. Deletion mutants completely lacking the protein, as well as one which contains a truncated protein retaining the ATP-binding site, remained viable. However, they were sensitive to UV light and exhibited elevated levels of homologous recombination and spontaneous mutagenesis. In addition, mutations mapping in or near rep which allow construction of rep uvrD double mutants at a high frequency were isolated.  相似文献   

10.
Transcriptional control of the uvrD gene of Escherichia coli   总被引:5,自引:0,他引:5  
H M Arthur  P B Eastlake 《Gene》1983,25(2-3):309-316
  相似文献   

11.
Three mutants producing thermosensitive DNA-dependent Adenosine triphosphatase (ATPase) I were screened from a collection of temperature-sensitive mutants of Escherichia coli K12. ATPase I purified to near homogeneity from one of the mutants (JE11000) possesses both thermosensitive DNA-dependent ATPase and DNA helicase activities. We have shown that ATPase I is encoded by the uvrD gene as first suggested by Oeda et al. (1982): (i) the thermosensitive ATPase I mutation present in JE11040 lies in or very close to the uvrD gene, (ii) ATPase I activity is absent in uvrD210, uvrD156, and uvrD252 mutants. Thus the thermosensitive mutations correspond to new uvrD mutations. However, the mutation present in JE11040 confers neither UV sensitivity nor mutator phenotype at high temperature. Evidence is presented that the mutant ATPase I is stabilized in vivo at 42 degrees C.  相似文献   

12.
C Gatz  W Hillen 《Nucleic acids research》1986,14(10):4309-4323
The nucleotide sequence of the mutarotase gene from Acinetobacter calcoaceticus has been determined. It reveals an open reading frame of 381 amino acids. The codon usage of A. calcoaceticus for this gene is similar to E. coli except for the amino acids Leu, Ala, Glu, and Arg where major differences exist. This did not interfere drastically with high level expression in E. coli. The regulatory sequences for the initiation of translation are similar to the ones described for E. coli. The N-terminal 20 amino acids, which are not found in the mature enzyme, show homology to signal sequences of exported proteins. In A. calcoaceticus and E. coli mutarotase is specifically secreted into the periplasmic space. Processing of the signal sequence occurs at identical sites in both organisms. The mature mutarotase consists of 361 amino acids and has a calculated molecular weight of 38457 Da. Expression of mutarotase at a high level in a recombinant E. coli destabilizes the outer membrane. This results in coordinated leakage of mutarotase and beta-lactamase into the culture broth.  相似文献   

13.
The Escherichia coli Rep helicase is a stable monomer (Mr = 72,802) in the absence of DNA; however, binding of single-stranded (ss) or duplex (ds) DNA induces Rep monomers to dimerize. Furthermore, a chemically cross-linked Rep dimer retains both its DNA-dependent ATPase and helicase activities, suggesting that the functionally active Rep helicase is a dimer (Chao, K., and Lohman, T. M. (1991) J. Mol. Biol. 221, 1165-1181). Using a modified "double-filter" nitrocellulose filter binding assay, we have examined quantitatively the equilibrium binding of Rep to a series of ss-oligodeoxynucleotides, d(pN)n (8 less than or equal to n less than or equal to 20) and two 16-base pair duplex oligodeoxynucleotides, which are short enough so that only a single Rep monomer can bind to each oligonucleotide. This strategy has enabled us to examine the linkage between DNA binding and dimerization. We also present a statistical thermodynamic model to describe the DNA-induced Rep dimerization in the presence of ss- and/or ds-oligodeoxynucleotides. We observe quantitative agreement between this model and the experimental binding isotherms and have analyzed these isotherms to obtain the seven independent interaction constants that describe Rep-DNA binding and Rep dimerization. We find that Rep monomers (P) can bind either ss-DNA (S) or ds-DNA (D) to form PS or PD, respectively, which can then dimerize to form P2S or P2D. Furthermore, both protomers of the DNA-induced Rep dimer can bind DNA to form either P2S2, P2D2 or the mixed dimer species P2SD and ss- and ds-DNA compete for the same sites on the Rep protein. When bound to DNA, the Rep dimerization constants are approximately 1-2 x 10(8) M-1 (6 mM NaCl, pH 7.5, 4 degrees C), which are greater than the dimerization constant for free Rep monomers by at least 10(4)-fold. The Rep-ss-DNA interaction constants are independent of base composition and sequence, consistent with its role as a nonspecific DNA-binding protein. Allosteric effects are associated with ss- and ds-DNA binding to the half-saturated Rep dimers, i.e. the affinity of either ss- or ds-DNA to the free promoter of a half-saturated Rep dimer is clearly influenced by the conformation of DNA bound to the first protomer. These allosteric effects further support the proposal that the Rep dimer is functionally important and that the Rep-DNA species P2S2 and P2SD may serve as useful models for intermediates that occur during DNA unwinding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
Abstract Oxaloacetate decarboxylase from Klebsiella pneumoniae is a membrane bound sodium-pumping biotin enzyme. In electron microscopic samples, the enzyme particle appeared rod-like, with a length of about 12.9 nm and a width of about 7.4 nm, and with two submasses. Based on electron microscopic comparison of full-size enzyme molecules and free α-subunits, it is concluded that oxaloacetate decarboxylase contains only one α-subunit per enzyme particle. The α-subunit of the enzyme revealed a subdivision into two domains of different sizes forming a 'cleft'. Electron microscopic affinity labeling with avidin demonstrated that the biotin prosthetic group present on the α-subunit is located in this cleft, close to the complex formed by the β- and γ-subunits. The fact that 'pairs' but no higher specific aggregates could be observed after incubation with avidin, also indicates that only one copy of the α-subunit is present in an oxaloacetate decarboxylase particle.  相似文献   

16.
17.
The gene for Escherichia coli rep helicase (rep protein) was subcloned in a pBR plasmid and the protein overproduced in cells transformed with the hybrid DNA. The effect of purified enzyme on strand unwinding and DNA replication was investigated by electron microscopy. The templates used were partial duplexes of viral DNA from bacteriophage fd::Tn5 and reannealed DNA from bacteriophage Mu. The experiments with the two DNA species show DNA unwinding uncoupled from replication. The single-stranded phage fd::Tn5 DNA with the inverted repeat of transposon Tn5 could be completely replicated in the presence of the E. coli enzymes rep helicase, DNA binding protein I, RNA polymerase and DNA polymerase III holoenzyme. A block in the unwinding step increases secondary initiation events in single-stranded parts of the template, as DNA polymerase III holoenzyme cannot switch across the stem structure of the transposon.  相似文献   

18.
19.
The hlyX gene from Actinobacillus pleuropneumoniae, which confers a hemolytic phenotype on Escherichia coli, was sequenced, and its role in regulation of gene expression was investigated. No similarity was found between the hlyX sequence and sequences of known hemolysin or cytotoxin genes. However, the hlyX sequence was very similar to that of the fnr gene of Escherichia coli which encodes the global regulatory protein, FNR. Comparison of the deduced amino acid sequence of the hlyX gene product (HlyX) with that of FNR revealed a high degree of well-aligned sequence correlation throughout the polypeptide chain. For example, 23 of 24 amino acids in the DNA-binding region of FNR are identical in the corresponding region of HlyX. Four cysteine residues in the amino-terminal region are also conserved. The promoter region of hlyX is very similar to that of fnr. It has a putative -10 sequence which closely resembles the E. coli -10 consensus sequence. This sequence is overlapped by a potential operator which is very similar to the FNR-binding-site consensus sequence. Functional homology between HlyX and FNR was also demonstrated. Plasmids carrying hlyX complemented the nutritional lesion of an fnr deletion strain of E. coli. These data suggest that HlyX may regulate, rather than mediate, hemolytic activity in E. coli, but the possibility that HlyX is both a regulator of gene expression and a hemolysin cannot be excluded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号