首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial NAD(+)-dependent malic enzyme (EC 1.1.1.40) is expressed in rapidly proliferating cells and tumor cells, where it is probably linked to the conversion of amino acid carbon to pyruvate. In this paper, we report the cDNA cloning, amino acid sequence, and expression in Escherichia coli of functional human NAD(+)-dependent mitochondrial malic enzyme. The cDNA is 1,923 base pairs long and contains an open reading frame coding for a 584-amino acid protein. The molecular mass is 65.4 kDa for the unprocessed precursor protein. Comparison of the amino acid sequence of the human protein with the published NADP(+)-dependent mammalian cytosolic or plant chloroplast malic enzymes reveals highly conserved regions interrupted with long stretches of amino acids without significant homology. Expression of the processed protein in E. coli yielded an enzyme with the same kinetic and allosteric properties as malic enzyme purified from human cells.  相似文献   

2.
3.
We have isolated a 1918-bp cDNA from a human adrenal cDNA library which encodes a novel thioredoxin reductase (TrxR2) of 521 amino acid residues with a calculated molecular mass of 56.2 kDa. It is highly homologous to the previously described cytosolic enzyme (TrxR1), including the conserved active site CVNVGC and the FAD-binding and NADPH-binding domains. However, human TrxR2 differs from human TrxR1 by the presence of a 33-amino acid extension at the N-terminus which has properties characteristic of a mitochondrial translocation signal. Northern-blot analysis identified one mRNA species of 2.2 kb with highest expression in prostate, testis and liver. We expressed human TrxR2 as a fusion protein with green fluorescent protein and showed that in vivo it is localized in mitochondria. Removal of the mitochondrial targeting sequence abolishes the mitochondrial translocation. Finally, we determined the genomic organization of the human TrxR2 gene, which consists of 18 exons spanning about 67 kb, and its chromosomal localization at position 22q11.2.  相似文献   

4.
The cDNA clone for rat liver microsomal aldehyde dehydrogenase (msALDH) was isolated and sequenced. The deduced amino acid sequence consisting of 484 amino acid residues revealed that the carboxyl-terminal region of msALDH has a hydrophobic segment, which is probably important for the insertion of this enzyme into the endoplasmic reticulum membrane. COS-1 cells transfected with the expression vector pcD containing the full-length cDNA showed that the active enzyme was expressed and localized mainly on the cytoplasmic surface of the endoplasmic reticulum membranes. It has been proposed that ALDH isozymes form a superfamily consisting of class 1, 2, and 3 ALDHs (Hempel, J., Harper, K., and Lindahl, R., (1989) Biochemistry 28, 1160-1167). Comparison of the amino acid sequence of rat liver msALDH with those of rat other class ALDHs showed that msALDH was 24.2, 24.0, and 65.5% identical to phenobarbital-inducible ALDH (variant class 1), mitochondrial ALDH (class 2), and tumor-associated ALDH (class 3), respectively. Several amino acid residues common to the other known ALDHs, however, were found to be conserved in msALDH. Based on these results, we proposed to classify msALDH as a new type, class 4 ALDH.  相似文献   

5.
Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to increase two- to four-fold in both leaves and roots as the NaCl level in the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a gt10 libary representing poly(A)+ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full-length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kb and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.  相似文献   

6.
7.
Null mutations in the glucokinase (GCK) gene can cause autosomal dominant type 2 diabetes (maturity onset diabetes of the young, MODY); however, MODY is genetically heterogeneous. In both liver and pancreatic islet, glucokinase is subject to inhibition by a regulatory protein (GCKR). Given the role of GCK in MODY, GCKR is itself a candidate type 2 diabetes susceptibility gene. Here we describe the structure of full-length (2.2 kb) cDNA for human GCKR, from the hepatoblastoma cell line HepG2. The human GCKR translation product has 625 amino acids and a predicted molecular weight of 68,700. It has 88% amino acid identity to rat GCKR. Yeast artificial chromosomes (YAC clones) containing human GCKR were isolated, and the gene was mapped to Chromosome (Chr) 2p23 by fluorescent in situ hybridization and somatic cell hybrid analysis.EMBL database accession numbers: Z48475 and Z48476.  相似文献   

8.
The primary structure of Escherichia coli L-threonine dehydrogenase   总被引:2,自引:0,他引:2  
The complete primary structures of Escherichia coli L-threonine dehydrogenase has been deduced by sequencing the cloned tdh gene. The primary structure so determined agrees with results obtained independently for the amino acid composition, the N-terminal amino acid sequence (20 residues), and a short sequence at the end of an internal peptide of the purified enzyme. The presence of a predicted Asp-Pro bond at residues 148 and 149 was confirmed by treatment of purified threonine dehydrogenase with dilute acid and subsequent analysis of the resulting cleavage products. The primary structure of L-threonine dehydrogenase from E. coli has been examined for possible homology to other NAD+-dependent dehydrogenases; indications are that this enzyme is a member of the zinc-containing long-chain alcohol/polyol dehydrogenase family.  相似文献   

9.
The gene ald, encoding aldehyde dehydrogenase, has been cloned from a genomic library of Escherichia coli K-12 constructed with plasmid pBR322 by complementing an aldehyde dehydrogenase-deficient mutant. The ald region was sequenced, and a single open reading frame of 479 codons specifying the subunit of the aldehyde dehydrogenase enzyme complex was identified. Determination of the N-terminal amino acid sequence of the enzyme protein unambiguously established the identity and the start codon of the ald gene. Analysis of the 5'- and 3'-flanking sequences indicated that the ald gene is an operon. The deduced amino acid sequence of the ald gene displayed homology with sequences of several aldehyde dehydrogenases of eukaryotic origin but not with microbial glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

10.
cDNA encoding the human homologue of mouse APEX nuclease was isolated from a human bone-marrow cDNA library by screening with cDNA for mouse APEX nuclease. The mouse enzyme has been shown to possess four enzymatic activities, i.e., apurinic/apyrimidinic endonuclease, 3'-5' exonuclease, DNA 3'-phosphatase and DNA 3' repair diesterase activities. The cDNA for human APEX nuclease was 1420 nucleotides long, consisting of a 5' terminal untranslated region of 205 nucleotide long, a coding region of 954 nucleotide long encoding 318 amino acid residues, a 3' terminal untranslated region of 261 nucleotide long, and a poly(A) tail. Determination of the N-terminal amino acid sequence of APEX nuclease purified from HeLa cells showed that the mature enzyme lacks the N-terminal methionine. The amino acid sequence of human APEX nuclease has 94% sequence identity with that of mouse APEX nuclease, and shows significant homologies to those of Escherichia coli exonuclease III and Streptococcus pneumoniae ExoA protein. The coding sequence of human APEX nuclease was cloned into the pUC18 SmaI site in the control frame of the lacZ promoter. The construct was introduced into BW2001 (xth-11, nfo-2) strain and BW9109 (delta xth) strain cells of E. coli. The transformed cells expressed a 36.4 kDa polypeptide (the 317 amino acid sequence of APEX nuclease headed by the N-terminal decapeptide derived from the part of pUC18 sequence), and were less sensitive to methylmethanesulfonate and tert-butyl-hydroperoxide than the parent cells. The N-terminal regions of the constructed protein and APEX nuclease were cleaved frequently during the extraction and purification processes of protein to produce the 31, 33 and 35 kDa C-terminal fragments showing priming activities for DNA polymerase on acid-depurinated DNA and bleomycin-damaged DNA. Formation of such enzymatically active fragments of APEX nuclease may be a cause of heterogeneity of purified preparations of mammalian AP endonucleases. Based on analyses of the deduced amino acid sequence and the active fragments of APEX nuclease, it is suggested that the enzyme is organized into two domains, a 6 kDa N-terminal domain having nuclear location signals and 29 kDa C-terminal, catalytic domain.  相似文献   

11.
A human insulinoma cDNA library was constructed in expression plasmid vector pUEX1. Clone pUEX1Ins12 was selected from human insulinoma cDNA library by means of hybridization with the insulin probe and a nucleotide sequence of the insertion was determined. It codes for full size amino acid sequence preproinsulin and furthermore, contains the entire 3'-end of noncoding mRNA region and 44 nucleotides from the 5'-untranslated region. The bacterial strain pUEX3Ins8 producing preproinsulin as beta-galactosidase fusion protein was constructed.  相似文献   

12.
13.
14.
The D-xylose isomerase (EC 5.3.1.5) gene from Escherichia coli was cloned and isolated by complementation of an isomerase-deficient E. coli strain. The insert containing the gene was restriction mapped and further subcloning located the gene in a 1.6-kb Bg/II fragment. This fragment was sequenced by the chain termination method, and showed the gene to be 1002 bp in size. The Bg/II fragment was cloned into a yeast expression vector utilising the CYCl yeast promoter. This construct allowed expression in E. coli grown on xylose but not glucose suggesting that the yeast promoter is responding to the E. coli catabolite repression system. No expression was detected in yeast from this construct and this is discussed in terms of the upstream region in the E. coli insert with suggestions of how improved constructs may permit achievement of the goal of a xylose-fermenting yeast.  相似文献   

15.
Synthetic oligonucleotides representing all possible sequences of an N-terminal and an internal region of the A-chain of abrin C were used to generate a probe specific for abrin-related sequences using the polymerase chain reaction on Abrus precatorius genomic DNA. A lambda phage library constructed from genomic DNA isolated from leaf tissue of A. precatorius was screened and positive hybridising clones were characterised by restriction enzyme analysis. The coding regions of unique clones were characterised by DNA sequencing. One clone encodes a preproprotein closely related to abrin C with 83% similarity between the A-chain sequences. Based on similarity with the ricin toxins and Ricinus communis agglutinin, the preproabrin consists of an A-chain of 251 amino acids preceded by 34 amino acids containing an N-terminal signal peptide, followed by a 14-amino-acid linker and a B-chain of 263 amino acids. The mature A-chain of the preproabrin has been expressed cytoplasmically in Escherichia coli and the soluble recombinant protein was produced at levels exceeding 6% of total cell protein. The recombinant A-chain has been purified to homogeneity and its ability to depurinate 28S rRNA in rat liver ribosomes has been demonstrated in vitro.  相似文献   

16.
17.
The primary structure of human C1 inhibitor was determined by peptide and DNA sequencing. The single-chain polypeptide moiety of the intact inhibitor is 478 residues (52,869 Da), accounting for only 51% of the apparent molecular mass of the circulating protein (104,000 Da). The positions of six glucosamine-based and five galactosamine-based oligosaccharides were determined. Another nine threonine residues are probably also glycosylated. Most of the carbohydrate prosthetic groups (probably 17) are located at the amino-terminal end (residues 1-120) of the protein and are particularly concentrated in a region where the tetrapeptide sequence Glx-Pro-Thr-Thr, and variants thereof, is repeated 7 times. No phosphate was detected in C1 inhibitor. Two disulfide bridges connect cysteine-101 to cysteine-406 and cysteine-108 to cysteine-183. Comparison of the amino acid and cDNA sequences indicates that secretion is mediated by a 22-residue signal peptide and that further proteolytic processing does not occur. C1 inhibitor is a member of the large serine protease inhibitor (serpin) gene family. The homology concerns residues 120 through the C-terminus. The sequence was compared with those of nine other serpins, and conserved and nonconserved regions correlated with elements in the tertiary structure of alpha 1-antitrypsin. The C1 inhibitor gene maps to chromosome 11, p11.2-q13. C1 inhibitor genes of patients from four hereditary angioneurotic edema kindreds do not have obvious deletions or rearrangements in the C1 inhibitor locus. A HgiAI DNA polymorphism, identified following the observation of sequence variants, will be useful as a linkage marker in studies of mutant C1 inhibitor genes.  相似文献   

18.
A Saito  S Sekine  Y Komatsu  M Sato  T Hirano  S Itoh 《Gene》1988,73(2):545-551
cDNA clones coding for growth hormone (eGH) of Japanese eel (Anguilla japonica) have been isolated from a cDNA library prepared from pituitary gland poly(A)+ RNA. The nucleotide sequence of the eGH cDNA was determined. It codes for the prehormone of 209 amino acids (aa) including a putative signal peptide of 19 aa. The deduced amino acid sequence was identical with that determined for eGH protein. The primary structure of eGH was compared with those of other species growth hormones (chum salmon, chicken, rat, and human). Mature eGH was expressed in Escherichia coli harboring a plasmid in which the eGH cDNA was under control of the phage lambda pL promoter. Recombinant eGH polypeptide was immunoreactive to rabbit antiserum against natural eGH. Furthermore, eGH derivative with amino-terminal deletion (delta 1-3 eGH) was produced in E. coli reaching up to 5% of total cellular proteins.  相似文献   

19.
F Dardel  G Fayat    S Blanquet 《Journal of bacteriology》1984,160(3):1115-1122
The intact metG gene was cloned in plasmid pBR322 from an F32 episomal gene library by complementation of a structural mutant, metG83. The Escherichia coli strain transformed with this plasmid (pX1) overproduced methionyl-tRNA synthetase 40-fold. Maxicell analysis showed that three major polypeptides with MrS of 76,000, 37,000, and 29,000 were expressed from pX1. The polypeptide with an Mr of 76,000 was identified as the product of metG on the basis of immunological studies and was indistinguishable from purified methionyl-tRNA synthetase. In addition, DNA-DNA hybridization studies demonstrated that the metG regions were homologous on the E. coli chromosome and on the F32 episome. DNA sequencing of 642 nucleotides was performed. It completes the partial metG sequence already published (D. G. Barker, J. P. Ebel, R. Jakes, and C. J. Bruton, Eur. J. Biochem. 127:449-451, 1982). Examination of the deduced primary structure of methionyl-tRNA synthetase excludes the occurrence of any significant repeated sequences. Finally, mapping of mutation metG83 by complementation experiments strongly suggests that the central part of methionyl-tRNA synthetase is involved in methionine recognition. This observation is discussed in the light of the known three-dimensional crystallographic structure.  相似文献   

20.
The structural gene (glnA) encoding the glutamine synthetase (GS) of the extremely thermophilic eubacterium Thermotoga maritima has been cloned on a 6.0 kb HindIII DNA fragment. Sequencing of the region containing the glnA gene (1444 bp) showed an ORF encoding a polypeptide (439 residues) with an estimated mass of 50,088 Da, which shared significant homology with the GSI sequences of other Bacteria (Escherichia coli, Bacillus subtilis) and Archaea (Pyrococcus woesei, Sulfolobus solfataricus). The T. maritima glnA gene was expressed in E. coli, as shown by the ability to complement a glnA lesion in the glutamine-auxotrophic strain ET8051. The recombinant GS has been partially characterized with respect to the temperature dependence of enzyme activity, molecular mass and mode of regulation. The molecular mass of the Thermotoga GS (590,000 Da), estimated by gel filtration, was compatible with a dodecameric composition for the holoenzyme, as expected for a glutamine synthetase of the GSI type. Comparison of the amino acid sequence of T. maritima GS with those from thermophilic and mesophilic micro-organisms failed to detect any obvious features directly related to thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号